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Abstract—We propose several interactive global illumination techniques for a diverse set of massive models. We integrate these

techniques within a progressive rendering framework that aims to achieve both a high rendering throughput and an interactive

responsiveness. To achieve a high rendering throughput, we utilize heterogeneous computing resources consisting of CPU and GPU.

To reduce expensive data transmission costs between CPU and GPU, we propose to use separate, decoupled data representations

dedicated for each CPU and GPU. Our representations consist of geometric and volumetric parts, provide different levels of

resolutions, and support progressive global illumination for massive models. We also propose a novel, augmented volumetric

representation that provides additional geometric resolutions within our volumetric representation. In addition, we employ tile-based

rendering and propose a tile ordering technique considering visual perception. We have tested our approach with a diverse set of large-

scale models including CAD, scanned, simulation models that consist of more than 300 million triangles. By using our methods, we are

able to achieve ray processing performances of 3 M�20 M rays per second, while limiting response time to users within 15�67 ms. We

also allow dynamic modifications of light, and interactive setting of materials, while efficiently supporting novel view rendering.

Index Terms—Massive models, ray tracing, photon mapping, global illumination, heterogeneous parallel computing, voxels,

compression

Ç

1 INTRODUCTION

THE complexity of polygonal models has been increasing
dramatically in both areas of computer-aided design

(CAD) and entertainment. This continuing trend is mainly
caused by the ever-growing demands of achieving higher
accuracy for CAD and better realism for movies and games.
This in turn causes significant challenges to high-quality
visualization and rendering because of the heavy loads of
computation and memory. The main bottleneck of render-
ing massive models that cannot fit into the memory of CPU
or GPU is the data transmission time introduced by fetching
data from external drives (e.g., HDD or SSD) or between
CPU and GPU because of the limited bandwidth such as
PCI-Express. The excessive data transmission costs hinder
high rendering throughput and interactive responsiveness.

Most prior methods for rendering massive models mainly
have been focused on providing basic visual effects such as
local illumination and hard shadows [1]. Supporting global
illumination requires significantly more computation than
local illumination. More importantly, unlike coherent rays,
such as the primary and shadow rays widely used in local

illumination, secondary rays generated in global illumina-
tion, such as path tracing and photon mapping are
incoherent and diverge into a wide area of a model, leading
to excessive data loading given the limited available
memory of CPU and GPU. As a result, the data transmission
time of global illumination of massive models can take a
larger portion compared to that of local illumination. Even
though most prior techniques that are mainly designed for
local illuminations show meaningful performance improve-
ments, they show insufficient performance for interactive
global illumination of massive models.

Recent GPUs provide high computational power and,
thus, are capable of producing interactive high-quality
global illumination. Nonetheless, because of the relatively
limited video memory (e.g., 1�2 GB), they can handle
only small-scale models well with traditional in-core
rendering methods.

In this paper, we propose novel techniques enabling
interactive rendering of large-scale models consisting of
hundreds of millions of primitives by highly utilizing the
computational power of GPU and minimizing data trans-
mission costs between CPU and GPU. The key idea is to use
both geometric and volumetric representations for an input
polygonal model to efficiently perform global illumination
and utilize available heterogeneous computing resources of
CPU and GPU.

Our hybrid representation named Tri-level Representa-
tions for eXpress rendering (T-ReX) consists of separate,
three different levels of details (LOD) for the input model:
the original polygonal representation, and coarse and fine
volumetric representations (Section 4). We use the original,
fully detailed geometric representation only at the CPU,
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while the two volumetric representations are used at GPU.
The coarse volumetric representation is designed such that
it can fit into the video memory of GPU, while the fine
volumetric representation is stored in an external drive and
fetched to the video memory asynchronously in an on-
demand fashion.

We choose photon mapping as our global illumination
rendering technique for massive models, since it has been
known to handle a wide variety of rendering effects
robustly; we extend our methods to another global
illumination technique, ambient occlusion. We partition
various types of rays required to perform photon mapping
into two disjoint sets that do and do not require high
geometric resolutions. For rays that generate high-
frequency visual effects (e.g., primary rays), we use the
geometric representation on the CPU side. For all the other
rays that tend to generate low-frequency visual effects (e.g.,
gathering rays), we use our volumetric representation on
the GPU side. This enables a significant reduction on the
data transmission cost between CPU and GPU, leading to a
lower requirement on the communication bandwidth. We
then utilize the available communication bandwidth for
asynchronously transmitting necessary portions of the fine
volumetric representation to the video memory, and then
progressively refine the rendering quality using the
additionally loaded, finer volumetric representation. As a
result, our system provides global illumination effects
interactively for massive models, and then converges to a
high-quality result quickly.

Main contributions and results. In summary, main con-
tributions of this paper are as follows:

. Hybrid representation consisting of geometric and
volumetric representations of massive polygonal
models.

. Progressive rendering framework that utilizes het-
erogeneous computing resources and minimizes the
data transmission costs.

The proposed techniques and system provide the
following benefits:

. High performance and interactive responsiveness. By
utilizing heterogeneous computing resources and
minimizing data transmission costs, we are able to
achieve ray processing performance of 3 M�20 M

rays per second. More importantly, for various types
of models with varying model complexity, our
system provides photon mapping rendering results
progressively within 15�67-ms response time, while
allowing dynamic changes on camera, light, and
material setting at runtime.

. High complexity. By using separate, decoupled multi-
resolutions for CPU and GPU, we can achieve
interactive responsiveness even for massive models
(Fig. 1) consisting of up to 470 M triangles on
commodity hardware. Also, our techniques mainly
designed for massive models can handle small
models robustly without much computation over-
head over the state-of-the-art global illumination
techniques specialized for small models.

To the best of our knowledge, the progressive rendering

framework, integrated with our proposed techniques, is the

first system that interactively performs photon mapping for

massive models capable of dynamic changes on the camera,

lights, and materials.

2 RELATED WORK

In this section, we explain prior approaches of supporting

global illumination for massive models.

2.1 Massive Model Rendering

There are orthogonal approaches for handling large-scale

models: compact representation, cache-friendly, multireso-

lution, and so on.

2.1.1 Compact Representations

Mesh-based representations [2], [3], [4] provide the most

detailed representation for models including a spatial

hierarchy for efficient ray tracing, but can require expen-

sive memory space and I/O access time. As a mesh-based

representation, we use a compressed version of it only for

handling operations requiring high geometric resolutions

at CPU.
A point-based approach [5], [6] like point clouds

decouples illumination data from the geometry, and

employs multiresolution techniques for efficient rendering.

The irregular distribution of point samples enables high-

quality indirect illumination effects, but also leads to heavy
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Fig. 1. These figures show photon mapping results of the Boeing 777 model consisting of 366 M triangles in different views. These results are
progressively refined and are acquired after 40 k frames that take 8�12 minutes. More importantly, each rendering frame is provided to users with
less than 100-ms latency time, while allowing dynamic changes on camera, light, and material setting.



computation costs. Gobbetti and Marton [7] showed
interactive performance for local illumination of large-scale
point clouds.

Recently, volume-based representations such as regular
voxels are actively used for interactive performance. In this
approach, the data of both geometry and estimated radiance
are approximated as voxels in sparse voxel octrees [8], [9],
[10], [11]. It is well suited to GPU architectures thanks to its
compact storage and efficient traversal, and provides
plausible rendering quality. Crassin [12] discussed some
difficulties of sparse voxel octrees such as computing
primary rays and detailed shadows that require a very
high resolution of the voxels. We address these issues by
using a separated geometric representation and our
proposed augmented voxel representation for the shadow.
VoxLOD [13] showed interactive color bleeding effects on
massive models by using asynchronous voxel loading. We
also use a similar asynchronous loading for out-of-core
voxels for providing better quality in a progressive manner,
when the data bandwidth is available. In addition, our
rendering framework supports photon mapping and can
generate more realistic outputs.

2.1.2 Cache-Friendly Techniques

These techniques can be broken into out-of-core, i.e., cache-
aware, and cache-oblivious techniques. Out-of-core techni-
ques reduce the number of data fetching from disk [14]
assuming a particular cache size. Cache-oblivious techni-
ques were shown to improve the cache coherence across
different cache sizes [15]. In the field of ray tracing, there are
a few techniques that maximize cache utilization by
reordering rays [16], [17], [18]. However, these techniques
have not been widely applied to interactive global
illumination because of their limited performance improve-
ment; they can reduce, but not remove most of the
expensive disk I/O accesses at runtime.

Wald et al. [19] demonstrated interactive visualization of
a Boeing model consisting of 366 million triangles by using
an out-of-core approach, but global illumination is not
supported. In our method, we can provide a reasonable
rendering quality efficiently based on the coarse volumetric
representation that fits into the video memory, and then
progressively refine it with other representations proving
higher resolutions using CPU and GPU.

2.1.3 Multiresolution

Extensive research efforts have been put into designing
various multiresolution techniques for geometry [20],
spatial hierarchy [21], and lighting [22]. Sparse voxel octrees
[11] provide a multiresolution scheme for all of them
efficiently. In this paper, we extend this volumetric
representation to provide interactive global illumination
for massive models.

2.2 Global Illumination

High-quality rendering techniques have been long studied,
and good books are available [23], [24].

The unbiased Monte Carlo ray tracing approach (e.g.,
bidirectional ray tracing [25]) based on the rendering
equation is the standard solution of global illumination,
but converges to the reference slowly. Many extensions

have been made to improve its performance while introdu-
cing bias. Two notable techniques among them are virtual
point lights (VPLs)-based radiosity [26] and photon map-
ping [27]. In this work, we adopt photon mapping because
it has been known to provide various rendering effects.

Recently, photon mapping has been extended to effi-
ciently support an infinite number of photons given available
memory [28], stochastic rendering effects [29], and robust
error estimation with a progressive rendering framework
[30]. These techniques can be naturally combined with our
method that focuses on handling massive models.

To improve the performance of global illumination, a
class of global illumination techniques decomposes rays
into different sets and uses a representation tailored for
each set of those rays [31]. In addition, these representations
have varying resolutions and, thus, provide multiresolu-
tions. Another class of approaches use volumetric repre-
sentations [32], [11] for improving the performance of
global illuminations by introducing bias or visual artifacts
to the final rendering results. Our method adopts similar
concepts of these techniques for global illumination with
large-scale models.

In addition to these approaches, many different inter-
active techniques (e.g., image-space techniques) have been
proposed. See a recent survey on this topic [33]. As
emphasized in its list of open problems, most global
illumination techniques have been mainly designed and
tested for small-scale models. Supporting scalability and
large-scale models remains one of under-addressed topics
in the rendering field.

2.3 Progressive and Adaptive Sampling

Progressive rendering techniques have been widely
accepted especially for interactive global illumination.
Unbiased Monte Carlo ray tracing techniques are intrinsi-
cally progressive [34], and photon mapping was extended
to be progressive [28].

Various sampling methods have been extensively stu-
died and can be integrated within a progressive rendering
framework. Most sampling techniques are based on the
variance of the previous samples [35]. In addition, human
perception is also taken into account to guide sampling [36].
In this paper, we also use two saliency metrics [41], [37] that
can be efficiently evaluated.

2.4 Heterogeneous Computing Resources

Recently, global illuminations have been accelerated by
using multiple heterogeneous resources such as CPUs and
GPUs. Budge et al. [17] proposed a generalized data
management scheme on CPU/GPU hybrid resources for
path tracing. Unlike the previous approaches, we separate
data representations for CPU and GPU and minimize
expensive data transmission overheads between them.
While Budge et al. generate unbiased images in tens of
minutes to hours, our framework aims to progressively
produce biased images with high responsiveness.

3 OVERVIEW

We propose a novel framework to utilized the computation
power of both CPU and GPU. As a result, the framework
can compute global illumination of massive models with
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high rendering throughput and responsiveness. In this
section, we give an overview of our approach. We classify
rays required to perform photon mapping into two disjoint
sets called C-rays and G-rays, where C-rays and G-rays are
rays that tend to create high-frequency and low-frequency
rendering effects, respectively. We process C-rays on the
CPU with a detailed, but compressed polygonal representa-
tion called HCCMesh [2], while process G-rays on the GPU
with our volumetric representation, augmented sparse
voxel octree (ASVO) (Fig. 2). At a high level, ASVO serves
both as an approximated geometry for the input model and
a volumetric representation of photons for indirect illumi-
nation; see Section 4.2 for more details.

We define C-rays to be the primary rays and their
secondary rays that reflected on perfect specular materials,
since they generate high-frequency rendering effects. All the
other rays (e.g., gathering rays and shadow rays) are grouped
together into G-rays, since they are likely to generate low-
frequency effects, which can be constructed plausibly even
with our approximated representation, ASVO.

We dedicate CPU to process C-rays, since CPU has a
relatively large main memory that is required to hold the
detailed polygonal models. On the other hand, most rays in
G-rays are generated to produce low-frequency effects such
as indirect illumination. In addition, the number of rays in
G-rays is much higher (e.g., four to 12 times) than that in C-
rays, leading to a higher computation load. As a result, we
propose to use our volumetric representation ASVO and
GPU to process those rays in G-rays, since the volumetric
representation suits well to GPU.

Runtime algorithm. Fig. 2 shows an overall rendering
framework that uses both CPU and GPU to compute direct
and indirect illumination based on photon mapping. To
compute indirect illumination, we perform a module of
Photon tracing that generates and traces photons in the GPU
side, and accumulate generated photons in our volume
representation ASVO as discussed in [8].

We process rays tile-by-tile for better controlling the
response time of our rendering framework. We, therefore,
employ a Tile ordering module that orders tiles according to
cache coherence and visual importance of tiles.

For each tile, we process C-rays associated with the tile
in the CPU side by using the HCCMesh; this is conducted
in a C-ray tracing module. Specifically, we perform
intersection tests for C-rays against the mesh in the CPU

side. If C-rays intersect with perfect specular materials, we
recursively trace the rays until they do not intersected with
any perfect specular materials or are not terminated based
on the Russian roulette. We then send their last intersection
results to the GPU side for processing G-rays, generated
from those C-rays, with the ASVO representation in a G-ray
tracing module and shading the final rendering output in a
Shading module.

At the startup of our system, we first load the HCCMesh
into main memory of the CPU. If the size of the HCCMesh
is bigger than the main memory, we use an out-of-core
version of the HCCMesh [2]. We then load a coarse version
of our ASVO representation to the video memory of the
GPU. Once these initial data loading operations are done,
our system is ready to provide interactive response of a
result to users.

At runtime, we run an Asynchronous voxel loading module
that fetches necessary portions of the finer version of our
ASVO asynchronously to provide better rendering results
progressively; we do not send the original geometry to
GPU at all. Such necessary portions are decided in a view-
dependent and on-demand manner during a ray proces-
sing stage.

We also use a Preview module, which traces only primary
rays in a reduced resolution (e.g., 100 by 100) that can be done
quickly. This preview module let users can receive a new
rendering result interactively, even when processing C-rays
and G-rays in CPU and GPU takes much longer time.

4 DATA REPRESENTATIONS

In this section, we present our data representations for
large-scale global illumination, followed by their preproces-
sing step.

4.1 Mesh Representation

As a detailed mesh representation for C-rays that produce
high frequency effects, HCCMesh representation [2] is used.
HCCMesh is a compact mesh representation that tightly
integrates an input triangular mesh and its Bounding
Volume Hierarchy (BVH) together. It reduces the size of
the BVH by using connectivity templates of a hierarchy, and
compactly encodes bounding volumes (BVs) based on
vertices of the mesh. Furthermore, it provides random
access on the compressed mesh and its BVH.

484 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

Fig. 2. This figure shows our rendering framework and data transitions between different modules.



4.2 Augmented Sparse Voxel Octree

We use the ASVO for efficient handling of G-rays that
produce indirect illuminations in the GPU side. ASVO
consists of two different components that provide increas-
ing higher resolutions: upper and lower ASVOs, and each
of both has additional component called occluder bitmaps
(Fig. 3). Unlike sparse voxel octrees [11], we store geometric
information only in the leaf nodes of the upper and lower
ASVOs, since storing the information in every node is not
beneficial for our main application of handling large-scale
models. The leaf node has the following structure:

Listing 1: Our leaf node struture of the ASVO

representation

The size of a leaf node can vary depending on the size of
material information; we use 36 bytes in our implementa-
tion. The occluder bitmap is generated by subdividing a leaf
voxel and assigning bit values to represent geometric
information. This occluder bitmap can provide higher
geometric resolutions for rays of G-rays that are sensitive
to geometric resolutions (e.g., shadow rays).

We preload all the data of the upper sparse voxel octree
and its corresponding occluder bitmaps to the video
memory of the GPU and, thus, avoid their data transmission
overhead between the CPU and the GPU at runtime. On the
other hand, necessary portions of lower ASVOs (and their
occluder bitmaps) are identified at runtime and asynchro-
nously loaded to improve rendering quality progressively.

Upper ASVO. The upper ASVO is constructed such that it
can fit into the video memory of GPU. In other words, its
size is smaller than the available video memory of the GPU.
As a result, the upper ASVO can be resident in the video
memory and never swapped out at runtime. It has a r3

u

resolution. In practice, we set ru to be in a range between
256 and 1k, resulting in a few hundred MBs (e.g., 300 MB).

We set the dimensions of the upper ASVO (hence its
voxels) to be equal for efficient ray tracing (Fig. 4a). The
bounding cube of the upper ASVO is recursively subdi-
vided in the middle along each dimension to generate a

sparse octree. All the nonempty nodes are stored in an array
by the breadth-first search order. For each nonempty leaf
node, we compute and record the representative normal
and material information used for an illumination model
(e.g., Phong illumination). The normal and material
information are computed using triangles weighted by its
intersected area with the voxel. This representative in-
formation in each leaf node serves as a LOD representation
of geometry contained in each voxel, and is used for
efficiently tracing multibounced photons and G-rays. Each
internal node contains only pointers to its child nodes. Note
that leaf nodes of the sparse octree do not contain the
original geometry of the model nor any pointers to them;
ASVO is totally a decoupled representation from the mesh.

Lower ASVOs. Conceptually, lower ASVOs have finer
voxel resolutions than that of the upper ASVO. However,
having lower ASVOs causes an increased memory require-
ment and more importantly, an increased data access time.
In addition, there are potential overheads caused by
synchronizations in the GPU side for connecting lower
ASVOs to the upper ASVO as we discuss later.

To efficiently access lower ASVOs and reduce various
synchronization operations, we create lower ASVOs for
internal nodes in a particular depth, not for leaf nodes, of
the upper ASVO, as shown in Fig. 3. Let us denote such
internal nodes of the upper ASVO linking nodes. At runtime
when we access a certain linking node of the upper ASVO,
it is expected to access its subtree. We, therefore, prefetch its
corresponding lower ASVO asynchronously [38] and con-
nect it with the linking node of the upper ASVO. Since we
cannot hold all the lower ASVOs in the video memory, we
use a simple memory management method, clock algo-
rithm, for unloading less-frequently used lower ASVOs.

The benefits of having lower ASVOs for internal nodes
instead of leaf nodes come from the fact that the number of
update operations drastically reduces, thus improves I/O
throughputs. This is because the number of internal nodes
is typically much smaller than the number of leaf nodes
given the octree representation. In practice, we choose
internal nodes whose depth is lower than leaf nodes in three
levels for linking nodes, and thus, we reduce up to 83

update operations. One may consider using a small size of
the upper ASVO to avoid the overlap. We have found that
this alternative provides low rendering quality before the
lower ASVOs are loaded.

To use lower ASVOs at runtime, we need to connect
them with linking nodes of the upper ASVO. To do so, we
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Fig. 3. ASVO: Our ASVO consists of upper and lower ASVOs, each of
which is combined with occluder bitmaps for every leaf node. The
occluder bitmap has bit values, each of which indicates whether its
corresponding subvoxel overlaps with the original geometry.

Fig. 4. The left figure visualizes bounding cubes of voxels that have a
depth of six, while the right figure visualizes leaf nodes of the ASVO.



simply overwrite the child pointer of each linking node
with the address of its corresponding lower ASVO after
appropriate locking on data. Since we need only a single
address update for each lower ASVO, this update can be
done quite efficiently. We perform the connection and
unloading process right after we process all the G-rays in
the G-ray tracing module to reduce expensive synchroni-
zation. See the supplementary report for the analysis,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2013.112.

Occluder bitmaps. The upper and lower ASVOs provide
enough resolutions for various indirect illuminations (e.g.,
color bleeding) in our tested models, while providing an
interactive rendering performance. Nonetheless, we found
that it is necessary to have more detailed LOD representa-
tions of the geometry for visibility tests, especially for high-
frequency shadows. To address this issue, we propose to
use an occluder bitmap in each leaf node of the upper and
lower ASVOs. The occluder bitmap of a leaf node provides
additional visibility information for a voxel corresponding
to the node. To construct the occlusion bitmap, we
subdivide the voxel of the node into r3

o subvoxels, and
check only whether each subvoxel is empty or not. We use
this binary information of each subvoxel to provide higher
geometry information for shadow rays (Fig. 5). In practice,
we set ro to be 4, and thus requiring 43 ¼ 64 bits, or 8 bytes
for each node.

In summary, our sparse octrees in ASVOs provide up to
ðru � rlÞ3 resolutions for the indirect illumination, while
ASVOs with the occlusion bitmaps provide ðru � rl � roÞ3
resolution for the geometry.

5 RENDERING ALGORITHM

When we receive events of light or material changes, we
trigger the photon tracing module (Fig. 2). For photon
tracing, we use the common photon tracing method of
the standard photon mapping approach [27]; we generate
photons from light sources and bounce them with the
model based on the Russian roulette. The difference
between our method and the standard photon tracing is
that we perform photon tracing in the GPU side and
accumulate photons on leaf voxels [11] of both upper and
lower ASVOs. Also, we progressively trace the photons

when lights or materials are changed for better response.
Once photon tracing is done, each leaf node of ASVOs
maintains a radiance value of all the accumulated photons
in its corresponding voxel.

When the user stays in a particular view point and, thus,
gives time for our rendering system, we asynchronously
perform photon tracing and gathering in the GPU side, and
then show its result to the user in a progressive manner (See
the supplementary report, available online). This is demon-
strated in the accompanying video, available in the online
supplemental material. Finally, shading is done with
photon mapping, and we perform a joint bilateral filtering
[39] using the G-buffer as its edge function, to reduce the
variance level of indirect illuminations.

5.1 GPU-Based Photon Tracing

We generate and trace photons from light sources. When a
photon hits a leaf voxel of an ASVO, its intensity are
accumulated to the voxel. We simply average the intensities
and store the single value into each leaf voxel.

We compute the outgoing direction of the intersected
photon based on the normal and material information stored
in the voxel. To decide whether a photon hits the geometry
in a leaf voxel as its visibility test, we additionally use an
occluder bitmap associated with the voxel. This effectively
improves the quality of visibility tests and, thus, the overall
rendering quality (Fig. 5). The traversal scheme of rays with
occlusion bitmaps are same to that with ASVOs, since they
are constructed based on regular grids as well.

When a user changes settings of lights or materials, we
initialize the accumulated photon information stored in all
the ASVOs and then restart the photon tracing module.
Since photon tracing takes a lot of time in most cases, we
generate new photons progressively and asynchronously in
a background mode, then accumulate them in an addi-
tional, temporary buffer. While generating new photons
with the updated settings in a background mode, we also
process photon gathering performed in the G-ray tracing
module for indirect illumination with the current ASVOs
that are stored in the video memory. We then get radiance
from both the current ASVO and temporary buffer, but with
different weights. Initially, we give a higher weight to the
current ASVOs, but to the temporary buffer. The weights
are linearly increased or decreased as the rendering frame
goes on; we finish the photon tracing module once it
generates photons with a user-defined target number (e.g.,
5 M photons for each light). Once all the photons are
generated, the temporary buffers are swapped with the
current ASVOs, and thus, we see rendering results only
with the current ASVOs. In practice, it takes approximately
5 sec., i.e., around 300 frames, to trace 10 M photons for the
cockpit viewpoint (Fig. 1b.)

If we do not allow users to modify the lighting/material
settings, we can then perform the photon tracing step with
our mesh representation, HCCMesh, for the best rendering
quality, and bake its results in the ASVOs. At runtime, we
need to perform G-ray tracing with the baked ASVOs and
shading in the GPU side.

5.2 Tile-Based Rendering

We divide an image screen to tiles for better controlling the
response time to users. We set each tile to have less than
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Fig. 5. The left and right images show rendering results computed w/o
and w/occlusion bitmaps with the resolution of 43, respectively. When we
do not use the occlusion bitmaps, shadow rays intersect with coarse
voxels and produce false shadows, while bright spots are created since
photons falsely interact with coarse voxels.



100 pixels then process the tiles using SIMD-based packet
tracing in CPU and GPU. Furthermore, we process multiple
tiles simultaneously in C-ray and G-ray tracing modules
with multiple working threads. We aim to provide a
rendering result to a user within a user-specified threshold,
tmax for interactivity. tmax is set to be 100 ms, which is the
time we consider as the longest response time. As a result, it
is possible to process only a portion of the tiles within a
frame. If so, we process other tiles in its subsequent frames.
If a user does not change the viewpoint, we can keep
process tiles and provide progressively improved rendering
results to the user at the viewpoint.

When we process a tile, we generate only a single
primary ray for each pixel in a tile. We then generate ns and
ng, the shadow and final gathering rays spawned from each
primary ray, respectively. Later, when we process the tile
again after processing all the other tiles, we also apply the
same procedure to the tile and, thus, improve its rendering
quality in a progressive manner.

Tile ordering. There can be many options for ordering of
processing tiles. The most common ordering methods for
tiles include row-by-row or z-curve [40]. Z-curve is usually
recommended for a higher performance, since it maximizes
the cache coherence arising during processing tiles sequen-
tially. We also identified that z-curve ordering shows the
best rendering performance, but it does not accommodate
users’ preference on which regions he or she wants to see
earlier than others.

To accommodate the users’ preference, we propose a
salience-based tile ordering. We estimate the users’ pre-
ference by predicting important, i.e., salient, regions of the
final reference image based on a salience metric. Since we
cannot compute the final reference image, we use the prior
rendering output. We adopt two saliency metrics proposed
by Itti et al. [41] and Achanta et al. [37] because of their
simplicity and efficiency (See the supplementary report,
available online, for the visualization). Note that any
efficient metrics can be adopted. For each tile, we evaluate
the saliency metric for each pixel of the prior rendering
output, and then compute an average saliency value for
each tile. We then sort tiles based on its saliency values and
process them sequentially.

We have tested with different tile orderings including our
saliency-based, z-curve-based, random, and row-by-row
ordering. We observed that z-curve-based ordering shows
the best performance followed by row-by-row, ours, and
random ordering. Nonetheless, the performance differences
between our method and the z-curve are very small (e.g., up
to 4 percent difference). As a result, we employ saliency-
based tile ordering for our approach, since it achieves the
best rendering quality in our progressive rendering frame-
work with a reasonably high runtime performance.

Once processing a tile is done at the C-ray tracing
module in the CPU side, we enqueue the tile and its
associated information (e.g., hit points and material index of
primary rays generated for the tile) to a job queue (Fig. 2),
which contains tiles to be passed to the GPU side. Instead of
sending an available tile to the GPU, we collect and send
them in a block, called fetching block. Specifically, when the
size of the job queue is bigger than a threshold, i.e., fetching
block granularity, we dequeue all the tiles as a fetching

block and send their information to the GPU side, followed
by launching the G-ray tracing module that performs the
final gathering and others in the GPU side. Once the G-ray
tracing model is done, we perform the shading and then
show its final result to the viewer.

The granularity of the fetching block is controllable based
on a threshold set by a user. If the user prefers higher
responsiveness, we need to use a smaller threshold (e.g.,
64 tiles). On the other hand, when users target optimized
rendering throughputs, larger fetching blocks (e.g., 2 k tiles)
are recommended. A more detailed analysis is available in
Section 6.2. We use the user-specified granularity of fetching
blocks to respect the user’s preference on the rendering
throughputs. Nonetheless, if the response time of the current
frame is larger than tmaxð¼ 100 msÞ, then the size of fetching
block is automatically reduced for the next frame to make
the response time to be less than tmax. When the response
time becomes within tmax, we gradually increase the
fetching block size to the user-specified granularity.

5.3 G-Ray Tracing

From the hit points computed by processing primary rays
of a tile in the CPU side, we generate shadow rays and final
gathering rays in the GPU side and process them in the G-
ray tracing module. We use an octree traversal algorithm
[42] to trace both kinds of rays with both ASVOs and
occlusion bitmaps in a similar manner that we trace photons
in the photon tracing module. To maximize the utilization
of the GPU, we process a bundle of rays simultaneously by
considering the SIMT architecture of modern GPUs [43]; we
map the bundle of rays to 32 threads, a warp in the recent
NVIDIA GPU architecture. Since these threads for the
bundle of rays in a warp execute one common instruction at
a time, the utilization will be lowered when the threads
have data-dependent conditional branches. To minimize
such serializations, we perform a cache-oblivious ray
reordering for rays [18]. In particular, we sort the rays
based on their ray directions and then assign rays with
similar directions to a warp.

5.4 Asynchronous Voxel Loading

When a ray traverses a linking node of the upper ASVO, we
check whether its corresponding lower ASVO is loaded or
not in the video memory. When the lower ASVO is loaded,
it indicates that it is already linked to the linking node of
the upper ASVO. As a result, we can keep traverse into the
corresponding lower ASVO. On the other hand, when the
lower ASVO is not loaded yet, we send a data loading
request to the CPU side, and process the rays only with the
information stored in the upper ASVO.

The voxel loading manager running asynchronously on
the CPU side receives such requests. It then asynchro-
nously loads the requested lower ASVOs in a separate
CPU thread. Once a lower ASVO is loaded, it is then sent
to the video memory asynchronously. As a final step, we
connect it based on a simple pointer update, as discussed
in Section 4.2.

6 RESULTS AND COMPARISONS

We have tested our method on a PC, which has 3.3-GHz
Intel Core i7 CPU (hexa-core), 8-GB RAM, NVIDIA GTX 680
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graphics card with 2-GB DRAM, and HDD. We have

implemented our system on Windows7 and NVIDIA

CUDA 4.2 toolkit. We allocate a certain portion of the

available video memory to an ASVO buffer that permanently

holds the upper ASVO, while the rest of the video memory

is reserved for caching lower ASVOs. Specifically, 15 percent

of the available video memory, which is 300 MB, is set for

the ASVO buffer; a range of 10 to 50 percent works well

without much performance and quality difference.
Benchmarks. We have tested our method with a diverse

set of models (Table 1) that have different characteristics.

Our main benchmark model is a Boeing 777 model (Fig. 1)

consisting of 366 M triangles. The model takes 15.6 and

21.8 GB for its mesh and BVH, respectively. We encode its

mesh and BVH compactly in a HCCMesh. The HCCMesh

representation takes only 6.55 GB. We use 11 area lights for

the model. In addition, we have tested our method with

different CAD models including Double Eagle Tanker

(82 M triangles), power plant (13 M triangles), and Sponza

models (66 k triangles) (Table 3) with four, eight, and two

area lights, respectively. The CAD models usually have

irregular distributions of geometry and drastically varying

triangle sizes. Other types of benchmark models include a

St. Matthew model (372 M triangles) as a scanned model,

and an isosurface model (469 M triangles) extracted from a

scientific simulation (Table 3) with one and two area lights,

respectively. Triangles in these models are distributed

relatively regularly, but are highly tessellated.

6.1 Implementation Details

We elaborate implementation details that are important to

be able to achieve a high performance of our method

reported in this paper.
Preprocessing. Parameters ru and rl play a major role in

terms of the overall performance and rendering quality.

Since the upper ASVO should have the highest resolution

while it fits within the ASVO buffer, we incrementally

increase the value ru of the upper ASVO by a factor of 2 and

use the maximum resolution value given the memory

constraint. Our system allows that we can have a high-

resolution rl for lower ASVOs, since they are fetched

asynchronously on demand at runtime. As a result, we let

users to set rl depending on the required resolution for a

model. Detailed parameter values for each tested model are

shown in Table 1.

Runtime rendering. We use the Russian roulette for tracing
photons, but we set it such that the average number of
bounces for photons is 3. We use the Phong illumination
model for BRDF. To process primary rays efficiently in the
C-ray tracing module, we adopt packet ray tracing
[44]. Some of our benchmark models have many lights.
Generating shadow rays for all the lights can be very time
consuming, hindering interactive response to users. To
efficiently consider many lights, we adopt a simple
importance sampling scheme for lights. Whenever we need
to generate shadow rays, we randomly select lights and
generate shadow rays only for those selected lights. We use
a simple heuristic of measuring the importance of lights; we
set a probability of each light based on its light intensity and
distance from the camera position. One can use more
advanced techniques such as an adaptive technique
proposed by Ward [45].

6.2 Performance

We show performance achievement mainly with the Boeing
model, the most challenging benchmark model among our
benchmark set. We also discuss performances with other
models, if they show different results over those of the
Boeing model.

Our unoptimized construction method for our repre-
sentations processes 30 k triangles per second on average.
For example, it takes about two and a half hours for the
Boeing model.

Runtime rendering. A common method for evaluating
performance of a rendering system is measuring its
rendering performance with a predefined camera path.
However, this evaluation protocol is not very meaningful to
our case, since our system is progressive and focuses on
delivering quick responsiveness to users (see the accom-
panying video, available in the online supplemental
material). Instead, we have measured the average response
times between a user event and its first result of our
rendering system across various views. More specifically,
we generate tiles for a new setting provided by a user and
send tiles in a fetching block to GPU, followed by showing a
result corresponding to those tiles. The response time is, thus,
measured between the time when the user provided an
event and the time that our system provides the initial
result to the event. We also compute the complete image time
that takes a time to process all the tiles of the final image.
The complete image time is provided only for comparison
with other nonprogressive rendering systems.

To measure response time in the Boeing 777 benchmark
model, we choose views such as overview, cockpit, cabin,
and engine, as shown in Fig. 1, following reference views
listed by Wald et al. [19]. We use a 512-by-512 image
resolution and Achanta et al.’s metric [37] as the saliency
metric for all the tests. We test parameters ns and ng with
two different values: ns ¼ ng ¼ 2, and ns ¼ 4 and ng ¼ 8.
We generate 5 M photons for each light, since the
rendering quality is almost converged with the number
of photons [27].

As shown in Table 2, our approach shows the response
time of 25.9�36.9 ms across different views when we use
ns ¼ ng ¼ 2. These results directly indicate that users can
get a feedback within this response time, even when they
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TABLE 1
This Table Shows Model Complexity, Size of Each
Representation and Resolution of Voxels (ru and rl)

for Benchmark Models

HCCM. stands for the HCCMesh. u-ASVO and l-ASVO indicate upper
and lower ASVOs, respectively.



modify camera, lighting, and materials. While providing
this interactive responsiveness, our method also achieves
3.4 M�10.4 M rays/s across different views. In terms of
complete image time, our method generates seven to nine
complete images per second. When we use bigger ns and ng
(i.e., ns ¼ 4 and ng ¼ 8), we can achieve higher ray
throughputs (6.6 M�15.0 M rays/s), but longer response
time (36.0�67.3 ms). Since the response time with ns ¼ 4
and ng ¼ 8 may not be preferred for interactive applica-
tions, the parameters ns ¼ ng ¼ 2 are chosen and used in
the accompanying video, available in the online supple-
mental material.

To see the utilization of the CPU and GPU, we also
measure the time spent on each computing resource when
we process all the tiles in the screen space. Since the CPU
and GPU run simultaneously, the total complete image time
is slightly longer than the maximum of each time spent on
CPU and GPU. The CPU is the main bottleneck for
overview and cockpit viewpoints, but the GPU for cabin
and engine viewpoints. In all the cases, our method shows
response time around 30 ms.

Fetching block granularity. The ray processing throughput
and responsiveness of our system depend heavily on the
fetching block granularity. To find reasonable ranges for the
parameter, we first tested various sizes of fetching blocks
with the fixed setting of ns ¼ ng ¼ 2 (Fig. 6). We tested with
the Boeing 777 model at the overview and cockpit view-
points, and all the other parameters are same to the ones
used for prior experiments. We observed the natural
tradeoff between the ray processing throughput and
response time, as we increase the fetching block size. We
found that using block sizes from 128 to 512 is a good
compromise in terms of both throughput and responsive-
ness. For the rest of tests, we use 512 as the default fetching
block size. For the St. Matthew scene, the size is, however,

automatically reduced to 128, to make the response time
within tmax as discussed in Section 5.2.

Limited main memory. Since HCCMeshes and upper
ASVOs of all of the tested models fit into the main memory
of our tested system, we can preload them. Therefore, at
runtime, disk I/O occurs for only lower ASVOs. To see the
performance and behavior of our framework with a smaller
size of main memory, we have also tested the Boeing
benchmark with 2 and 4 GB of main memory. This setting
makes our rendering system run in an out-of-core manner
in terms of HCCMeshes. To achieve high responsiveness,
we set 128 for the block size. When we test at the cockpit
viewpoint, we observed that our framework shows the
response time of 7.1 and 6.8 ms, and ray processing
throughput of 8.0 and 8.2 M rays/s on average, when we
use 2 and 4 GB, respectively. Both results are similar to
results achieved with 128 block size in Fig. 6, which is
observed in an in-core case where all the HCCMeshes are
preloaded. These results are achieved, mainly because we
use the fixed viewpoint and the most necessary parts of the
model are cached. We additionally performed a stress test
that quickly alternates the overview and cockpit viewpoints
to raise many cache misses. We achieve 5.7 and 6.1 M rays/
s on average, and response times of 10.2 and 8.4 ms. The
peak response time is 73.7 ms with 2-GB memory and
64.0 ms with 4-GB memory, both of which are still less than
tmaxð¼ 100 msÞ.

Other benchmark models. We reported results mainly
with the Boeing model so far. We also discuss results
with other models among our benchmark set. We achieve
4.7 M�20.2 M rays/s and response time of 15.3�60.4 ms
for other models. CAD models such as Double Eagle
tanker, power plant, and Sponza models show similar
performance trends to the Boeing 777 model, even though
they have varying model complexity, i.e., more than three
orders of magnitude difference in terms of triangle
counts. From these results, we can conclude that our
method shows a robust performance with a largely
varying model complexity. This is mainly because the
voxel-based representation of ASVOs is decoupled from
the original geometry.

On the other hand, the St. Matthew and isosurface
models show different results over CAD models. In these
models, especially the St. Matthew model, the main
computational bottleneck is on operations performed at
the CPU, since many triangles are mapped to a single tile
(i.e., 300�400 triangles per a pixel), leading to ineffective
utilization for the packet tracing in the CPU side. To verify
this, we disabled packet tracing and measured the
performance again with these models. We found that the
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TABLE 2
This Table Shows the Rendering Performance Including

Response Time, Resp. T, and Ray Processing Throughput
Measured in M rays/s at Different Views Shown in Fig. 1

We also report complete image time, CIT, for comparison with other
work. Time is reported in ms unit.

Fig. 6. These graphs show response time and ray processing
throughputs as a function of the fetching block sizes.



rendering system without packet tracing shows higher
performance (about four times) than using packet tracing;
parenthesized results in Table 3 are achieved without
packet tracing. Therefore, we found that it is not a good
choice to use packet tracing for these kinds of models. Data
structures for improving the performance even for such

incoherent rays were proposed [46]. Even though it is not
investigated further, it is straightforward to adopt this
scheme in our method.

Extensions to other global illumination techniques. Even
though we demonstrated our method mainly with photon
mapping, our method can be easily extended to support
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TABLE 3
Rendering Performance with Our Benchmark Models

CPU T and GPU T show time spent only on CPU and GPU for a complete image time, CIT, respectively.



other kinds of global illumination. For example, we can
adopt ambient occlusion by tracing random rays using our
ASVOs from each visible point, in addition to using the
HCCMesh for primary rays. We tested progressive ambient
occlusion tracing 10 rays per a frame for each visible point
and observed 16.6 M rays/s and 40.9-ms response time for
the cockpit viewpoint (See the supplementary report,
available online, for the rendering results).

6.3 Comparisons

To highlight the benefits of our approach, we compare our
CPU/GPU hybrid rendering algorithm with a framework
that runs entirely on CPU. We call this CPU-based frame-
work CPU-GI. In addition, we compare our method with a
framework that uses the original, full detailed model,
HCCMesh, even for shadow and gathering rays; in other
words, no geometry approximations are used for this
framework at all. We call this framework Full-GI. For Full-
GI, because we do not use ASVOs, photons are recorded in
a separate kd-tree as the usual photon mapping method.
Full-GI runs entirely on CPU because the full detailed
model cannot be loaded into GPU.

Comparisons with CPU-GI and Full-GI. We achieve
3.9 times improvements on average compared with CPU-
GI. The major difference between ours and CPU-GI is that
modules of photon tracing and G-ray tracing are performed
in the CPU side for CPU-GI. Therefore, this result indicates
that these modules are more efficiently performed in the
GPU side. This is mainly because traversal algorithms are
performed on ASVOs, which are defined on a regular grid
and, thus, are well suited for various GPU operations.

To see benefits of using only the ASVOs, we compare
CPU-GI with Full-GI, since the CPU-GI uses our represen-
tation in the CPU side, while the Full-GI running also in the
CPU side does not use it. CPU-GI achieves 3.3, 32, 84, and
9.3 times performance improvement on average over Full-
GI for the overview, cockpit, cabin, and engine viewpoints,
respectively. Complete image times at the cockpit and cabin
viewpoints using Full-GI are much longer than those
measured in other viewpoints because photon densities
needed for these viewpoints are much higher than others,
and hence, K-Nearest Neighbor (KNN) search takes a much
longer time. On the other hand, using ASVOs for photon
gathering is independent to the density of traced photons
because the photons are accumulated to voxels. As a result,
our method shows steady performance across different
regions and viewpoints.

Overall our method utilizing CPU and GPU achieves
135 times improvement on average over Full-GI. None-
theless, results of our method are approximations to those
of Full-GI (Fig. 7); results computed by Full-GI are
reference images computed by photon mapping. The major
difference comes from the fact that our volumetric
representation conservatively covers more space than the
original mesh. As a result, this conservativeness causes
false-positive ray intersections.

Comparison with GPU only framework. We have tested a
GPU only framework that also processes C-rays on GPU. To
analyze the performance of the processing C-rays on GPU,
we have implemented a GPU ray tracer, which is two times
faster than NVIDIA Optix [47]. We trace primary rays with
the Stanford Bunny model consisting of 70 k tris., and

original uncompressed mesh and HCCMesh representa-
tions are tested. We use a 512-by-512 image resolution and
trace one primary ray per pixel for the comparison. Note
that both representations can fit in the video memory of
GPU thanks to its small data size of the tested model. We
have observed that the GPU ray tracer is 8.3 times faster
than the CPU version with the uncompressed mesh, while
1.3 times faster with the HCCMesh.

Although using GPU shows higher performance than
CPU with both representations of the small model, we have
concluded that the GPU is not the ideal computing resource
for the HCCMesh, since its improvement is relatively minor,
i.e., only 1.3 times. The main reason is that decompression of
a HCCMesh requires a large amount of the working set and
a high number of conditional branches, both of which are
not well supported by current GPU architectures. Further-
more, if the size of a model is bigger than the video memory,
data should be continuously transferred from main memory
to the video memory, which significantly negates the
advantages of using GPUs. This excessive amount of data
transfer has been known as one of major bottlenecks of
rendering large-scale models [17].

Comparison with coupled representations. Several LOD-
based approaches [48], [21], [13] are coupled representa-
tions that consist both of a hierarchical LOD representation
and primitives (i.e., triangles of the original model) that are
spatially grouped and assigned to leaves of the hierarchical
representation. Although these coupled representations can
be more compact than our representation, they were not
mainly designed for rendering with heterogeneous comput-
ing resources such as CPU and GPU. As a result, they can
cause frequent, but unnecessary data transfers between the
main memory and the video memory. Departing from this
coupled approach, we decouple the original mesh and its
LOD representation into the HCCMesh and ASVOs. This
decoupling requires additional memory space. For exam-
ple, we use 89 percent more space over the HCCMesh by
having ASVOs for the Boeing model. We found that even
though we have such additional memory requirements, it
effectively reduces data transfer costs by fitting our
volumetric representation, especially the upper ASVO, in
the GPU video memory, and thus achieves a high
throughput and low response time.

Comparisons with prior voxel octrees. Crassin et al. [9]
proposed efficient voxel octrees as a volumetric LOD
representation, and used the same representation for
filtered (i.e., low-frequency effects) global illumination with
small models that can fit into the main memory [11]. At a
high level there are two main differences between our
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Fig. 7. Converged rendering images of our method are similar to the
reference image generated by Full-GI, photon mapping with full detailed
geometry and photon kd-tree.



representation and theirs. We use the compact HCCMesh to
process C-rays in the CPU side and augment voxel octrees
with occlusion bitmaps. As a result, we are able to support
high-frequency effects from geometry details better, and
thus, test our method with a diverse set of massive models
including CAD models that have irregular distribution of
geometry. Also, the voxel octrees can be directly applied to
our framework for G-rays instead of ASVOs, and it might
show similar rendering results if a proper resolution for the
prior voxel octree is used. However, it could be less efficient
because voxel octrees require more space than our ASVOs,
especially for visibility tests; the most detailed representa-
tion of the voxel octrees has its own color values unlike
occluder bitmaps. Note that we use a higher resolution for
the visibility tests by using the compact, occluder bitmaps.

Comparisons with small models. Our techniques are mainly
designed for handling massive models. Nonetheless, our
results indicate that our method can handle small models
robustly without much computation overheads in terms of
ray processing performance, even when compared with the
state-of-the-art global illumination techniques specialized
for small models [49]. This is mainly because our voxel
representation drastically reduces the computation of global
illumination. The technique proposed by Wang et al. [49]
processes 5.0 M�6.9 M rays per second (107 k photon rays,
250�500 gathering rays for 5 k sample point, and 2 M rays
for local illumination per frame) on NVIDIA GTX 280, and
showed 1.5 FPS for a kitchen scene containing 21 k triangles.
Since our graphics hardware outperforms about 2�3 times
over GTX 280, the performance of Want et al. approach is
expected to be 10 M�20 M rays per second on our test
machine. Even though the Sponza model consisting of 66k
triangles may have different characteristics to the kitchen
model, our method for the Sponza model shows 12.6
M�20.2 M rays per second.

7 CONCLUSION AND FUTURE WORK

We have presented various techniques and their integrated
progressive rendering framework to achieve a low response
time to users and high throughputs for global illumination
of massive models. In particular, we proposed to use a
decoupled representation consisting of polygonal and
volumetric representations, HCCMesh and ASVOs, to
reduce expensive transmission costs and achieve high
utilizations for the CPU and GPU. We also augmented
sparse voxel octrees with occlusion bitmaps to provide
higher geometric resolutions from our volumetric repre-
sentation. We also proposed saliency-based tile ordering
within our progressive rendering framework.

Limitations and future work. As other prior techniques
employing volumetric representations, our method is
biased and not even consistent. Also, our volumetric
representation spans more space compared to its original
polygonal model, causing false-positive intersections and
wider shadow regions. In scenes with point light sources
and highly glossy materials, our method can generate box-
like artifacts even when we use occlusion bitmaps (Fig. 8).
This artifact becomes more noticeable when voxels are close
to shadow or gathering rays. We tried an approach to detect
such cases, but it required too much computation, lowering
ray throughputs. We leave this issue as one of our future
work; adopting prefiltering [50] can be used to reduce such

artifacts. Also, ASVOs may have storage overheads for
small models such as Sponza model because the ASVOs do
not depend on the number of primitives. Note that these are
common drawbacks of voxel-based ray tracing.

In our current rendering framework, we manually
assigned each type of rays to the CPU and GPU depending
on its characteristics. A better approach is to measure ray
footprints based on ray differentials [20] and assign rays
with small footprints to the CPU using HCCMesh, while
process the rest of rays with wider footprints on the GPU
with ASVOs. Also, even though our approach provided
interactive rendering results within our progressive frame-
work, the workload of CPU and GPU can vary a lot
depending on the camera, geometry, and materials. This
can result in a low utilization of either the CPU or GPU. To
address this issue, we would like to extend our approach to
off-load jobs of a busy resource to another resource.

There are many other interesting avenues for future
work. Because our framework requires preprocessing, it is
not easy to support fully deforming models. It can be
extended to support local modifications such as geometry
additions or deletions, which are useful operations for CAD
designers. These operations can be supported by tracing
rays with separate BVHs of modified meshes for immediate
response, but with a low rendering throughput. We can
then perform various precomputation in a background
mode with the modified meshes for a higher rendering
throughput later on. Also, the visual quality of our photon
mapping can be improved by having a list of photons in
each voxel instead of the accumulated photon intensity. The
radiance estimation can be done by accessing neighboring
voxels and then performing KNN search with photons
stored in those voxels. Nonetheless, this improvement still
leaves our approach to be biased. Also, our approach aimed
to both a high rendering throughput and a low responsive
time to users. We would like to design an optimization
process considering our two goals and use it as a principle
to redesign various components of our progressive render-
ing framework.
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