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Memory-Scalable GPU Spatial
Hierarchy Construction

Qiming Hou, Xin Sun, Kun Zhou, Christian Lauterbach, and Dinesh Manocha

Abstract—Recent GPU algorithms for constructing spatial hierarchies have achieved promising performance for moderately complex
models by using the breadth-first search (BFS) construction order. While being able to exploit the massive parallelism on the GPU, the
BFS order also consumes excessive GPU memory, which becomes a serious issue for interactive applications involving very complex
models with more than a few million triangles. In this paper, we propose to use the partial breadth-first search (PBFS) construction
order to control memory consumption while maximizing performance. We apply the PBFS order to two hierarchy construction
algorithms. The first algorithm is for kd-trees that automatically balances between the level of parallelism and intermediate memory
usage. With PBFS, peak memory consumption during construction can be efficiently controlled without costly CPU-GPU data transfer.
We also develop memory allocation strategies to effectively limit memory fragmentation. The resulting algorithm scales well with GPU
memory and constructs kd-trees of models with millions of triangles at interactive rates on GPUs with 1 GB memory. Compared with
existing algorithms, our algorithm is an order of magnitude more scalable for a given GPU memory bound. The second algorithm is for
out-of-core bounding volume hierarchy (BVH) construction for very large scenes based on the PBFS construction order. At each
iteration, all constructed nodes are dumped to the CPU memory, and the GPU memory is freed for the next iteration’s use. In this way,
the algorithm is able to build trees that are too large to be stored in the GPU memory. Experiments show that our algorithm can
construct BVHs for scenes with up to 20 M triangles, several times larger than previous GPU algorithms.

Index Terms—Memory bound, kd-tree, bounding volume hierarchy.
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INTRODUCTION

CURRENT many-core GPUs have evolved into incredible
computing processors for general-purpose computa-
tion, and this evolution is likely to continue in the future.
Recently, GPU construction of hierarchical data structures,
such as kd-trees [1] and BVHs [2], has shown great promise
in a variety of applications, including ray tracing, photon
mapping, point cloud modeling, and simulations. Unlike
traditional CPU-based algorithms, which build hierarchical
data structures following the depth-first search (DFS) order,
the GPU algorithms achieve interactive construction by
using the breadth-first search (BFS) order, which best
exploits the massive parallelism on the GPU. These
algorithms exploit the multiple cores and high memory
bandwidth in terms of building hierarchies of moderately
complex models at interactive rates. Unfortunately, this
parallel computation comes at the cost of excessive memory
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consumption overhead because the GPU algorithms need to
maintain and process a large amount of data simultaneously.
This becomes a serious issue for interactive applications
involving complex models with more than a few million
triangles [1], [2]. Current GPUs have a different memory
architecture than CPUs. The on-board memory on GPUs is
limited to a few GBs. Moreover, GPUs have high memory
bandwidth, much smaller per-thread caches and GPU’s
memory limitation cannot be virtualized by on-demand
paging. As a result, it is important to design GPU-based
algorithms that can cope with these memory architecture
characteristics of GPUs for interactive applications.

An important characteristic of many-thread algorithms
running on parallel processing platforms is that the
memory consumption is correlated with the level of
parallelism. GPU’s architecture exaggerates this issue as it
requires significantly more parallel threads than physical
execution units to perform efficiently. Executing more
computations in parallel requires simultaneously maintain-
ing more intermediate data and thus consumes more
memory. The key idea of this paper is to make proper
trade-offs between memory consumption and level of
parallelism to control memory consumption while max-
imizing performance. For hierarchy construction, such
trade-offs are facilitated by the partial breadth-first search
(PBFS) order. Unlike the BFS and DFS, the PBFS allows the
set of tree nodes being processed simultaneously to be
explicitly controlled in each iteration, and thereby enables
management of the memory consumption and level of
parallelism. By carefully tuning the set of nodes being
processed simultaneously, we can achieve a good balance
between them. Note that the PBFS only affects the order of
node processing and does not impact the quality of the
resulting hierarchy.

Published by the IEEE Computer Society
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We apply the PBES order to two hierarchy construction
algorithms. The first algorithm is a GPU kd-tree algorithm
that achieves superior performance for a given memory
bound. The algorithm uses PBFS to automatically adapt the
level of parallelism based on available memory and thus
allows the peak memory consumption to be controlled
without swapping any data out of the GPU. On an NVIDIA
GeForce GTX 280 GPU with 1 GB memory, we can construct
kd-trees of scenes with up to several million triangles at
interactive rates. The second algorithm is an out-of-core
BVH construction algorithm on the GPU. Compared to kd-
tree construction, BVH construction has a relatively small
memory overhead. It does not split triangles and does not
need to dynamically allocate GPU memory. Consequen-
tially, the primitive storage remains static throughout the
construction and the final tree size can be bounded prior to
construction. However, the memory consumption will still
exceed the available GPU memory for very large scenes. We
use PBFS to extend BVH construction to handle such scenes.
At each PBFS iteration, all constructed nodes are dumped to
the CPU memory or disk, and the GPU memory is freed for
the next iteration’s use. In this way, the algorithm is able to
build trees that are too large to be stored in the GPU
memory. Our algorithm can construct BVHs for scenes with
up to 20 M triangles.

As far as we know, ours are the first GPU hierarchy
construction algorithms that are designed with a memory
bound in mind. Our methods can handle scenes nearly an
order of magnitude larger than previous GPU methods. For
small scenes that previous GPU methods can handle, our
algorithm achieves similar construction performance. For
large scenes, our method performs comparably to the state-
of-the-art multicore CPU algorithms in terms of construc-
tion time while maintaining tree quality similar to high
quality methods. In general, our methods scale well with
respect to the amount of available memory, and hierarchy
construction can be performed within user-specified mem-
ory bounds at a modest performance cost.

We will briefly review previous work relevant to fast
spatial hierarchy construction in Section 2. In Section 3, we
describe our memory-scalable kd-tree construction algo-
rithm. Section 4 describes how to use the PBFS order to
support out-of-core BVH construction on the GPU. Finally,
we present results in Section 5.

2 RELATED WORK

Several CPU-based algorithms have been proposed for fast
construction of surface area heuristic (SAH) kd-trees [3], [4],
which are commonly regarded to offer optimal ray tracing
performance. Hunt et al. [5] approximated the SAH cost
function to achieve subinteractive construction with mini-
mal degradation in tree quality. Shevtsov et al. [6]
developed an interactive parallel construction algorithm
with a modest memory footprint on multicore CPUs.
However, their tree suffers from considerable quality loss.
Soupikov et al. [7] recently introduced approximate triangle
clipping to compensate for this quality loss within a similar
construction time. However, with both algorithms, tests
show serious scalability issues at more than a few hundred
threads. This makes them inappropriate for massively
parallel architectures like GPUs.

Zhou et al. [1] proposed the first kd-tree construction that
runs entirely on the GPU. The algorithm maximizes

parallelism in the construction process and scales well to
GPUs with hundreds of cores. High-quality trees can be
constructed in rapid time. However, the high parallelism is
achieved at the cost of excessive memory consumption. This
results in a scene size limitation one order of magnitude
smaller than previous methods. We use the node splitting
schemes of [1] to maintain tree quality and construction
performancebutintroduce novel parallelization and memory
management techniques to bound the memory consumption.

BVH is an alternative spatial hierarchy for ray tracing
that favors build time over tracing performance. Efficient
construction has been demonstrated on both CPU and GPU
[8], [9], [2]. Recent work also demonstrates ray tracing
performance improvement by incorporating kd-tree-like
features into BVHs [10]. The state-of-the-art GPU BVH
construction algorithm [2] has a workflow resembling GPU
kd-tree construction. We apply the PBFS construction order
to the hybrid algorithm described in [2] for out-of-core BVH
construction of very large scenes.

Wachter and Keller [11] tackled the memory problem of
kd-trees from a different perspective. They terminated the
splitting node when necessary to bound the final hierarchy
size. Their approach puts the tree quality at risk and does
not apply to hierarchies with naturally bounded size like
BVH. In contrast, our work seeks to control the work
memory requirement during construction while maintain-
ing tree quality. Lauterbach et al. [12] reduced the memory
consumption by using triangle strips. We still use triangle
lists because they are more general and widely used in
computer graphics. Paging systems like virtual memory can
be used to handle large data within limited physical
memory, effectively providing out-of-core support for any
algorithm. Built-in virtual memory support can be expected
in future GPUs, such as Larrabee [13]. A general paging-like
out-of-core system also has been demonstrated on current
hardware [14]. While paging systems can be very efficient
when handling large input/output, paging intermediate
work memory can result in significant performance over-
head. Our PBFS aims to overcome this problem by
bounding work memory within available physical memory.
PBFS can also be used in combination with paging systems
to handle out-of-core input/output more efficiently.

Memory-bounded situations have been investigated in
traditional parallel programming research [15]. The main
focus there is the trade-off between data replication and
communication in distributed systems. Our work controls
peak memory usage by limiting the creation of new data
and does not involve data replication.

3 MEMORY-SCALABLE KD-TREE CONSTRUCTION

Most CPU-based kd-tree construction methods follow the
natural DFS order. Even multicore CPU algorithms follow
the DFS order in the majority of their pipelines. While the
DEFS order has a small memory footprint, it is difficult to
achieve good scalability on more than a few hundred of
threads. GPU-based constructors follow the BFS order [1],
[2]. The BFS maximizes the number of nodes constructed
simultaneously and thus benefits from the high parallelism
of the GPU to outperform DFS methods. However, it also
results in a significantly larger memory footprint.

During kd-tree construction, each node being split
requires storage of extra temporary data for the subsequent
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@ constructed node

splitting node unconstructed node

Fig. 1. Different kd-tree construction orders. The number in each node
corresponds to the iteration it is created in. (a) DFS kd-tree construction.
(b) BFS kd-tree construction. (c) Our PBFS kd-tree construction.

computation. Thus, the memory consumption is propor-
tional to the number of nodes being split simultaneously.
Based on this, we can make a rough comparison of the
memory cost between DFS and BFS schemes. Fig. 1
illustrates the set of splitting nodes maintained simulta-
neously in three construction schemes. The number of
splitting nodes with the DFS scheme is proportional to the
current construction depth, as shown in Fig. 1a. For a scene
with n primitives, this depth is O(log ). In a BFS constructor,
the number of splitting nodes grows exponentially with the
construction depth and eventually reaches O(n). This is
shown in Fig. 1b. This kind of extreme difference leads to a
heavy storage load for the BFS construction scheme.

We introduce a partial breadth-first search solution to
compromise between parallelism and the size of the peak
memory footprint. We control the peak memory by tuning
the number of nodes being split simultaneously. Compared
to the exhaustive BFS, the PBFS only splits part of the nodes
at a time. This is illustrated in Fig. 1c. When some trunks of
the tree are completely constructed, the corresponding
memory is released so that we can split the remaining nodes.

In the following, we first briefly review the BFS-based
construction algorithm of [1] in Section 3.1. We then present
our PBFS scheme in detail in Section 3.2. Our antifragmen-
tation dynamic buffer management scheme is introduced in
Section 3.3. Section 3.4 describes how we handle memory
issues related to triangle clipping.

3.1 Review of BFS kd-Tree Construction on GPU

The GPU kd-tree construction in [1] mainly consists of two
stages. The nodes are divided into two categories, large
nodes and small nodes, and are split with different

schemes. A node is categorized as large if the number of
triangles it contains is greater than a prescribed threshold;
otherwise, the node is small. The kd-tree construction starts
from the root node. First, a large-node stage is launched to
split all large nodes recursively. Small nodes generated by
splitting large nodes are stored in a dynamic buffer. After
dividing all large nodes, the large-node stage terminates,
outputting a buffer of small nodes. Then, a small-node stage
is launched to finish the construction by splitting all small
nodes recursively. For each large node, which contains
more than 64 triangles, the median splitting and “empty
space maximizing” are employed to minimize the traver-
sing cost of ray tracing. After node splitting, each triangle
intersected by a splitting plane is clipped into two polygons
(called clipped triangles in the following) and distributed to
the child nodes. A dynamic buffer is required to hold the
vertices of all the clipped triangles generated in the large-
node stage. For each small node, which contains no more
than 64 triangles, the splitting plane is determined to
minimize the SAH cost to minimize the traversal cost.
Triangle clipping is not performed during the small-node
stage. Each triangle intersected by the splitting plane is
simply distributed to both children.
The SAH cost function is defined as

SAH(z) = Cis + (Cr(x)AL(z) + Cr(x)Ag(x))/ A,

where Cj; is the constant cost of traversing the node itself,
C'r(z) is the cost of the left child given a split position z, and
Cr(z) is the cost of the right child given the same split.
Ap(z) and Ag(z) are the surface areas of the left and right
children, respectively. A is the surface area of the node.
Cr(z) and Cg(z) are usually evaluated as the number of
triangles in the two children. For each small node, the
splitting plane candidates are restricted to planes contain-
ing the faces of the axis-aligned bounding boxes (AABBs) of
the clipped triangles contained in the node.

Zhou et al. [1] also provide a data structure for storing the
triangles in small nodes as bit masks. All small nodes whose
parent nodes are large nodes are called small roots. The
triangle set contained in each small node is then stored as a
bit mask representing a subset of its small root. For each
small root, the triangle sets contained on both sides of each
splitting plane candidate are also precomputed as bit masks.
For each small node, with its triangle mask and the
precomputed split triangle sets of its small root, C,(z) and
Cr(z) can be computed efficiently with bitwise operations.

3.2 PBFS Construction

Note that in the above kd-tree algorithm, small nodes
consume much more memory than large nodes because the
number of small nodes is much greater than that of large
nodes. In particular, the precomputation data of all small
roots consume most of the temporary data in the tree
construction. Because the data of each small root are needed
by all of its descendant nodes, the data can only be freed
after all descendants of the small root are completely
constructed. Therefore, the key point to consider in
designing the PBFS strategy is to find an inexpensive way
to control the number of small nodes (including small roots)
being processed simultaneously.

Our solution is to alternate between large-node and
small-node construction, as shown in Fig. 2. Our observation
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Fig. 2. Our alternating kd-tree construction pipeline: the large-node
stage and small-node stage are launched in alternation.

is that it is unnecessary to wait until all small roots are
generated since the small roots are continuously generated
throughout the large-node stage. At any time if we find the
small roots are too numerous to be split simultaneously, we
should launch a small-node stage to complete the construc-
tion of as many small roots as available memory allows.
After this visit to the small-node stage, all temporary data
associated with the completed nodes are discarded. We can
then return to the large-node stage to continue generating
small roots.

The above solution needs to compute the maximal
number of small roots that the algorithm can process
simultaneously under a memory bound. In other words, we
need to compute the memory cost for building the subtree
under a small root. Unfortunately, there is no theoretical
peak memory usage for the SAH-based kd-tree construction
because the tree depth is uncertain. We thus need a tight
estimation. Observing that the precomputation data of
small roots take most of the peak memory usage, we
calculate the size of precomputation data exactly and
estimate the remaining memory usage as a constant factor
times the number of small roots. We set this factor to a very
conservative value at first and update it after each launched
small-node stage. The number of small roots that can be
handled under a memory bound can be easily computed by
dividing the memory bound by the estimated per-node
memory usage.

Each small-node stage begins with the estimated number
of small roots to handle. If the number is overestimated and
the stage fails due to insufficient memory, we rollback all
operations completed during this stage and try again with
half of the original small roots. While this approach is
robust, the rollback mechanism is costly. In practice, we
find that the memory cost estimation is accurate enough to
entirely avoid the costly rollback in all our experiments.

3.3 Dynamic Buffer Management

Dynamic buffers are constantly used throughout the kd-tree
construction process for maintaining splitting nodes and
storing constructed nodes. They inevitably lead to memory
fragmentation. If there are a few memory fragments left in
the middle of an available memory region, allocating a large
buffer could fail, as often happens when working on large
scenes. Therefore, we need efficient dynamic buffer

Static Buffer (Vertex Buffer, Index Buffer, ...)

Clipped Triangle Buffer
Reserved Clipped Triangle Slots

Other Dynamic Buffers

Constructed Node Blocks

Fig. 3. Memory pool layout in our dynamic buffer management scheme.

management to reduce fragmentation. For this purpose,
we reserve all available memory as a pool at the beginning
of the kd-tree construction, and allocate memory from the
pool using special strategies.

We compactly place all static buffers, such as the vertex
buffer and the index buffer, at the beginning of our memory
pool. For special reasons to be explained in Section 3.4, we
also allocate the buffer of clipped triangles statically, even
though it is a dynamic buffer.

The most important dynamic buffer is the buffer of
constructed nodes. This buffer is continuously appended
throughout the entire construction process and cannot be
discarded. Without special handling, allocations made for
this buffer can cause permanent memory fragmentation. We
observe that the nodes deposited into the buffer are left
untouched until the construction is complete. This observa-
tion allows us to apply a block-based strategy. We allocate
the constructed nodes buffer in 4 MB memory blocks from
the high address end of the memory pool. When construc-
tion begins, a block is allocated at the highest address.
When the buffer becomes full, we allocate another block
compactly before the previous one. Allocations for all other
dynamic buffers are performed at the low address end. The
result is that, as long as the memory pool is not used up, the
management of the constructed nodes buffer does not
interfere with other memory allocations. This is illustrated
as the cyan blocks in Fig. 3.

3.4 Efficient Storage of Clipped Triangles

The large-node stage also takes a considerable portion of the
memory because of the clipped triangles contained in the
nodes. As shown in Fig. 3, all of these triangles are kept in a
buffer. Nodes only maintain the indices of their triangles.
Since we clip triangles to nodes, newly clipped triangles
maybe added during construction. Therefore, the triangle
buffer has to be appended on the fly. Instead of dynamically
appending this buffer, we preallocate a static buffer with
sufficient size for all triangles.

The triangle buffer differs from the constructed nodes
buffer in our PBFS scheme. After precomputation of each
small-node stage, the clipped triangles contained in already-
processed small roots are no longer useful. We can label
them after each small-node stage and reuse the freed
memory slots later. As shown in Fig. 4, three slots are freed
after a small-node stage. These slots are then reused to store
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Fig. 4. Reusing the clipped triangle slots. Three slots are freed after a
small-node stage. These slots are then reused to store new clipped
triangles generated during subsequent triangle clipping.

Free slot

new clipped triangles generated during subsequent triangle
clipping. Also, this buffer does not grow as rapidly as that of
the constructed nodes. For typical scenes, the analysis in [16]
shows that splitting a node with & triangles generates O(v/k)
clipped triangles. By adding up clipped triangles generated
at all O(logn) tree levels, the total number of generated
clipped triangles can be expected to be O(n), where n is the
number of original triangles. These facts make it more
attractive to allocate the triangle list buffer statically. In
practice, we find a static triangle list with the capacity of 1.5n
triangles is sufficient for our test scenes.

Slot reuse is only possible if the information for each
clipped triangle can be stored in a fixed-size format. Note
that we store the current shape of each clipped triangle.
This shape is a triangle-AABB intersection, therefore, a
convex polygon of 3 to 9 vertices. Special handling is
required to pack it in a compact fixed-size format.

A triangle clipped by axis-aligned planes will result in a
polygon with no more than nine vertices and no more than
nine edges. The nine edges can come from the original three
edges and the six faces of the AABB. We encode each edge
as a 3- to 4-bit binary number. Edges of the AABB
are labeled from 000 to 101. The three original triangle
edges are labeled from 110 to 1,000. The total number of the
edges is packed in the four least-significant bits. The edge
labels are placed from the most-significant bits to the least-
significant bits in either clockwise or counterclockwise
order. If the clipped triangle contains the 1,000 edge, this
edge is always placed in the four most-significant bits. Fig. 5
illustrates the packing of a nine-edged clipped triangle
shape. Since there cannot be two edges with the same label
in a polygon, this 32-bit integer is enough for us to recover
all edges and vertices of a polygon given its original vertices
and the AABB. With this representation, a clipped triangle
only needs to keep the AABB, the edge integer, and the
index of the original triangle. This representation only takes
32 bytes per triangle and significantly reduces the memory
cost. The reconstruction of vertices does not slow down the
triangle clipping because of the reduced memory fetching.

3.5 Tree Output

When building the kd-tree with a given memory bound, the
output process of the constructed tree merits a bit of
discussion. In [1], the constructed tree is converted into a

. 010<-~
o 1017

[1/0/0/0[o] 1/1]1/1/0[1/0/0]o/0 1]1/1/1]0/1/0[1/0/1]0/0 o] 1 0 ;1]

Fig. 5. Packing a clipped triangle shape into a 32-bit integer.

preorder traversal format. However, this conversion is itself
a BFS traversal. At its memory peak, the original con-
structed tree, the preorder traversal, and the node corre-
spondence between them coexist in the memory. This peak
is considerably larger than the memory peak in our PBFS
construction and has to be avoided. Also, the finalization
algorithm of [1] has relatively strict requirements on the
processing order of tree nodes and does not fit well in our
PBFS scheme.

We chose to use our natural construction layout directly as
the final tree node layout and omit the conversion altogether.
In theory, our layout may cause a degradation in ray tracing
performance. In practice, we found such degradation to be
minor. Additionally, this format change allows us to omit the
finalization step in [1], resulting in slightly faster tree
construction as discussed in the next section.

4 OuTt-oF-CoRE BVH CONSTRUCTION

In this section, we describe how to use the PBFS construc-
tion order to extend the hybrid BVH construction algorithm
proposed by [2] to handle very large scenes. The underlying
approach consists of two steps. First, several coarsest
tree levels are constructed in a bootstrap pass to generate
sufficient parallelism, using Linear Bounding Volume
Hierarchy (LBVH), a spatial Morton codes-based algorithm.
Next, the remaining tree is then constructed in BFS order
using SAH-based strategies.

There is a significant difference in memory footprint
between BVH and kd-tree construction. BVH construction
does not split triangles or create duplicate triangle refer-
ences. Consequentially, the primitive storage remains static
throughout the whole construction and the final tree size
can be bounded prior to construction. Based these observa-
tions, Lauterbach et al. [2] only allocate memory for
primitives and the final tree at the beginning of the
construction algorithm. Node splitting and triangle sorting
are done in-place and little temporary memory is required
for construction. While the memory overhead is relatively
small, Lauterbach et al. [2] still cannot build trees that are
too large to be stored in the GPU memory (e.g., up to 1.5 M
triangles on a 1 GB GPU). An out-of-core solution is
necessary to handle such large scenes.

Our BVH construction pipeline is illustrated in Fig. 6.
The BVH construction also consists of two phases. First, all
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Fig. 6. Our BVH construction pipeline: after generating an initial list of a
few thousand splitting nodes, the subtrees of these nodes are
constructed iteratively.

primitives are loaded into the GPU memory and the AABBs
are computed. The bootstrap pass and a few SAH iterations
are performed to generate an initial list of a few thousand
splitting nodes. All the AABBs are sorted in-place to match
the order of their containing nodes. After that, the AABBs
and constructed nodes are dumped to the CPU memory
and all GPU memory occupied by phase one are freed.

In the second phase, we iteratively copy continuous
portions of the splitting nodes and the AABBs of primitives
contained in these nodes to the GPU, and construct subtrees
for these nodes. At the end of each iteration, the constructed
subtrees are dumped to the CPU memory and the primitive
AABBs are freed. We bound the memory consumption of
subtrees construction using the total number of primitives
in the constructed subtrees. This bound is then used to
maximize the number of subtrees constructed simulta-
neously in each iteration, just like in Section 3.2.

5 RESULTS AND DISCUSSION

We have implemented the described algorithms in CUDA
on a workstation with Intel Xeon dual-core 3.0 GHz CPU
and an NVIDIA GeForce GTX 280 graphics card with 1 GB
of memory.

5.1 KD-Tree Construction

In Fig. 7, we show nine test scenes with different scales
ranging from 10 K to 7 M triangles. On our hardware, the kd-
tree builder in [1] can only handle the first four scenes. It
fails for scenes with more than 871 K triangles due to
excessive memory consumption. Therefore, our PBFS
scheme improves scene scalability by approximately one
order of magnitude. Since the first four scenes can be
processed in pure BFS order, our algorithm automatically
degenerates to a two-stage construction and achieves
comparable performance. This is illustrated in Table 1.
Mpear, is the peak memory consumption of our method,
including the final kd-tree while excluding the scene data.
The slight difference in T}, is mainly due to the fact that we
do not convert the constructed tree to a preorder traversal.
Note that even in these small scenes, our PBFS scheme has a
lower peak memory consumption than that of [1]. This is

(9 (h) (i

Fig. 7. Test scenes used in this paper. All the images have a resolution
of 1,024 x 1,024. The Robots (b) is rendered with three lights and one
reflection bounce. The Kitchen (c) is rendered with six lights and eight
bounces. The Fairy Forest (d) is rendered with two point lights. All the
other scenes are rendered with one point light. (a) Toys, 11 K triangles.
(b) Robots, 71 K triangles. (c) Kitchen, 111 K triangles. (d) Fairy Forest,
178 K triangles. (e) Dragon, 871 K triangles. (f) Turbine Blade, 1,765 K
triangles. (g) Soda Hall, 2,195 K triangles. (h) Neptune, 4,008 K
triangles. (i) Asian Dragon, 7,219 K triangles.

largely due to our efficient clipped triangle storage as
described in Section 3.4. An interesting fact is that Tj,qc. is
about twice as fast as reported in [1]. We attribute this
performance divergence to hardware differences. Note that
we employed the same ray tracing program as in [1].
Comparing to the GeForce 8800 Ultra GPU used in [1],
the GeForce GTX 280 GPU used in this paper has a lower
texture unit to core ratio. This may have a significant
negative performance impact on the ray tracing kernel
which uses textures to access kd-trees and scene data.

In Table 2, we compare our algorithm with the state-of-the-
art multicore CPU kd-tree algorithms. The statistics of CPU
methods are directly taken from [7] and [6] with the latter
marked with superscript *. The CPU methods make different
trade-offs between construction time and tree quality. We

TABLE 1
Comparison with the BFS Construction Order [1]

Scene Our method BFS construction
Ttr&e Tt'race ]\/[peak Ttr&e TtTace Mpcak
Fig. 7(a)| 0.015s|0.026s| 3 MB | 0.012s|0.026s 8 MB
Fig. 7(b)| 0.037s|0.085s|29 MB | 0.038s|0.075s | 50 MB
Fig. 7(c) | 0.042s|0.332s |60 MB | 0.043s|0.329s | 90 MB
Fig. 7(d) | 0.058s|0.127s|68 MB | 0.065s|0.125s | 123 MB
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TABLE 2
Comparison with the Multicore CPU Methods

Scene Our method CPU methods
Tirce | Tirace | Mypeak Tiee | Tiaee

Fig. 7(e)| 0.170s|0.020s | 272 MB n/a n/a
Fig. 7(f) | 0.287s{0.041s |550 MB | 0.690s" | 0.091 s
Fig. 7(g)| 0.461s|0.036s|746 MB | 0.450s |0.040 s

Fig. 7(h)| 0.849s|0.074s | 747 MB n/a n/a
Fig. 7(1) | 1.428s]0.108s| 715 MB 1.600s | 0.200 s

compare our tree construction time with the fastest construc-
tion method and compare our trace time with the highest tree
quality method. M, is the peak memory consumption of
our algorithm. It includes the final kd-tree but not the scene
data. As shown, our algorithm can achieve comparable tree
construction performance to these methods while providing
higher quality trees with less ray tracing time.

An important feature of our algorithm is that, instead of
using up all available GPU memory, the user can choose to
specify a memory bound for kd-tree construction. In many
practical applications, not all GPU memory can be used for
tree construction—some memory has to be reserved for
other data (e.g., animation data) or tasks (e.g., simulation).
Our memory scalable algorithm is very useful in these types
of situations. We tested three scenes under different
memory bounds as shown in Table 3. “Unbounded” means
the memory bound is taken as all available GPU memory,
namely the total GPU memory minus the memory reserved
for scene geometry, rendering, and the operating system.
#SNS is the number of small-node stages launched during
construction. As the memory bound decreases, the con-
struction has to be split into more small-node stages to
reduce peak memory consumption and results in less
parallelism in individual small-node stages. For small
scenes, this causes underutilization of the GPU, and slows
down construction performance. For the Dragon scene,
restricting the memory bound to less than half of the
memory peak in the unbounded case results in a 10 percent
performance loss. However, for larger scenes, even a small

TABLE 3
Kd-Tree Construction under Different Memory Bounds

Scene A4b0und #SNS A4fcak jyree
Unbounded 1 272 MB | 0.170 s
200 MB 3 170 MB | 0.187 s
Fig. 7(e) 150 MB 5 131 MB | 0.194 s
100 MB 7 93 MB 0.204 s
Minimum - 55 MB -
Unbounded 1 550 MB | 0.287 s
400 MB 3 344 MB | 0.296 s
Fig. 7(f) 300 MB 5 260 MB | 0.306 s
200 MB 8 184 MB | 0.315 s
Minimum — 107 MB —
Unbounded 4 747 MB | 0.849 s
650 MB 6 646 MB | 0.855 s
Fig. 7(h) 500 MB 9 481 MB | 0.870 s
350 MB 18 320 MB | 0.904 s
Minimum — 255 MB —

(a)

Fig. 8. Kd-tree construction and ray tracing of two large animated
scenes. (a) 7,140 K triangles, 612 instances of three models each of
which has 5-20 K triangles. (b) 6,763 K triangles, a terrain and 135
instances of three skinning meshes each of which has 17-85 K triangles.
For each scene, at each frame, we construct a kd-tree and use it to ray
trace the scene completely on the GPU. Images are rendered at 1,024 x
1,024 resolution with four point lights. Note that object instancing is solely
used to simplify animation production and is not exploited by the kd-tree
constructor. (a) Falling objects. (b) Running animals.

fraction of the intrinsic parallelism is sufficient to achieve
full GPU utilization. For the Blade and Neptune scenes, the
performance loss is only about 6 percent. “Minimum”
means the minimum memory required by our algorithm to
run, which is the total size of clipped triangles and the final
constructed tree. This value is equivalent to the memory
consumption of construction on CPUs. Working under this
minimum memory on GPUs would lead to degenerate
performance due to the lack of parallelism. At least a few
more megabytes are required to get practical performance.

We also tested our kd-tree algorithm using the two large
animated scenes shown in Fig. 8. The falling objects
animation in Fig. 8a has gradually increasing scene
complexity beginning with 560 K triangles and reaching
7,140 K in the end. This scene demonstrates how our
performance and memory consumption changes with
respect to the scene complexity. As illustrated in Fig. 9a,
the memory peak of our construction algorithm exhibits a
two-phase behavior. When the scene is small and can fit
into the available memory, the peak grows rapidly at a
roughly linear speed. As the scene becomes larger, our PBFS
scheme takes effect and the memory peak oscillates at a
relatively steady level. As the scene size increases further,
the memory consumed by the scene geometry increases and
the memory available for kd-tree construction decreases.
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Fig. 9. Memory peak and performance of our construction algorithm for
the animated scene shown in Fig. 8a. (a) Memory peak. (b) Construction
performance.
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Fig. 10. Test scenes for out-of-core BVH construction. All images are
rendered at resolution 1,024 x 1,024 with one point light. (a) Thai Statue,
10,000 K triangles. (b) Power Plant, 12,748 K triangles. (c) Swarm
Objects, 20,021 K triangles.

Our construction algorithm thus reduces its memory peak
accordingly. Regardless of the memory peak behavior, our
construction time grows linearly with the number of
triangles, as shown in Fig. 9b. The PBFS scheme successfully
controls peak memory consumption with minimal perfor-
mance penalty.

The example in Fig. 8b demonstrates the potential of our
method in handling large animations. The scene geometry
and animation consume 248 MB GPU memory. Excluding
the memory reserved for rendering and the operating
system, only 650 MB memory on the GPU is available for
kd-tree construction. Our algorithm can handle that well
and achieves interactive performance. Each frame takes
approximately 1.84 seconds to render: the kd-tree construc-
tion takes about 1.46 seconds, and the remaining time is
spent on ray tracing, shading, and animation preparation.

5.2 BVH Construction

Fig. 10 shows three test scenes which cannot be handled by
the in-core BFS-based algorithm [2] due to the large memory
consumption of geometry and the final tree. Lauterbach et al.
[2] only handled scenes with less than 2 M triangles, while
our out-of-core algorithm can support scenes with up to 20 M
triangles. The statistics of construction timings and hierarchy
quality are shown in Table 4. Mcpy is the peak memory
consumption of an in-core CPU BVH construction algorithm.
Mpear, is the peak memory consumption of our BVH
construction algorithm. 7}, is hierarchy construction time,
including 7,,,, the GPU-CPU data transfer time. 7}, is the
relative ray tracing performance on a CPU ray tracer
compared to the full SAH solution [8]. For all scenes, our
constructed BVHs offer similar rendering performance to the
CPU reference results.

The GPU memory bottleneck in our BVH construction
algorithm is the AABB computation phase. In that phase, all
geometry data and AABBs have to be stored in GPU
memory. After the phase, the geometry data maybe freed
and the total memory consumption no longer increases.
Therefore, for our BVH construction algorithm, the mini-
mum memory requirement M ipimum 1S equal to M., in
Table 4. In terms of CPU memory consumption, our method
is exactly the same as a CPU construction algorithm.

Note that for the same tree quality, our out-of-core BVH
construction is still slower than the in-core reference
algorithm running on a eight-core CPU with 16 GB memory
[8]. Even with PBFS, the speed of our BVH construction is

TABLE 4
BVH Construction Timings and Hierarchy Quality

Scene Mcpu ]\/Ipeak Tiree T’L:upy Tirace
Fig. 10(a)| 1,100 MB | 452 MB [4.081 s|1.086 s| 93%
Fig. 10(b)| 1,430 MB | 612 MB |7.561 s{1.429 s| 93%
Fig. 10(c)| 2,200 MB | 897 MB [8.064 s|2.168 s| 97%

still far behind GPU’s ideal performance. The in-place BVH
construction requires stronger memory consistency than
what current GPUs offer and memory barriers have to be
added to guarantee correctness. The memory barriers cause
suboptimal latency hiding and result in performance
degradation. Our main focus is to push the state of the art
in the hierarchies that can be built by GPU-based algo-
rithms, based on memory efficiency. Future GPU architec-
tures like Fermi offer write caches and stronger memory
consistency, which may result in significant boost of our
BVH construction performance. In addition, we plan to use
the CPU to construct a portion of the nodes in parallel with
the GPU as a future work. Significant potential improve-
ment maybe achieved if workloads can be efficiently
balanced between the CPU and GPU. CPU-GPU data
transfer time will also be eliminated for nodes constructed
by the CPU.

6 CoNcLUSION AND FUTURE WORK

We have presented two GPU algorithms for constructing
spatial hierarchies with controllable memory consumption,
one for in-core kd-tree construction and the other for out-of-
core BVH construction. Both algorithms are based on the
PBFS construction order, and can handle scenes several times
larger than previous GPU methods. The construction time is
comparable with the state-of-the-art multicore CPU methods
and our tracing performance outperforms these methods.

The PBFS scheme provides an effective approach for
balancing memory usage while exploiting the parallelism in
general-purpose GPU computation. In the future, we would
like to apply this scheme to other GPU algorithms in
scientific computations and related applications. Although
promising, our kd-tree algorithm still has some limit-
ations—it does not control the final tree size. To cope with
available memory less than the tree size, tree-size-control-
ling techniques as in [11] have to be incorporated into our
PBFS scheme.

Data transfer between GPUs and CPUs consumes
significant time in the out-of-core BVH construction. In this
paper, we focus on using the PBFS scheme to reduce in-core
peak memory requirement. Data transfer techniques, like
host-mapped GPU memory, are orthogonal to our work. In
the future, we would like to incorporate such techniques to
improve the overall efficiency of construction.

The problem of memory consumption on GPUs is
fundamentally different from its counterpart on single-core
or multicore CPUs, because hundreds of thousands of
threads are launched simultaneously on GPUs. The same
problem should be present on other kinds of many-
core platforms, such as Fermi and Larrabee. The PBFS
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scheme proposed in this paper is not limited to CUDA, our
choice of the implementation language. It is also suitable for
other languages such as Compute Shader and OpenCL.
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