
Radiance Transfer Biclustering for Real-Time
All-Frequency Biscale Rendering

Xin Sun, Qiming Hou, Zhong Ren, Kun Zhou, and Baining Guo, Fellow, IEEE

Abstract—We present a real-time algorithm to render all-frequency radiance transfer at both macroscale and mesoscale. At a
mesoscale, the shading is computed on a per-pixel basis by integrating the product of the local incident radiance and a bidirectional
texture function. While at a macroscale, the precomputed transfer matrix, which transfers the global incident radiance to the local
incident radiance at each vertex, is losslessly compressed by a novel biclustering technique. The biclustering is directly applied on the
radiance transfer represented in a pixel basis, on which the BTF is naturally defined. It exploits the coherence in the transfer matrix and
a property of matrix element values to reduce both storage and runtime computation cost. Our new algorithm renders at real-time
frame rates realistic materials and shadows under all-frequency direct environment lighting. Comparisons show that our algorithm is
able to generate images that compare favorably with reference ray tracing results, and has obvious advantages over alternative
methods in storage and preprocessing time.

Index Terms—Illumination, rendering, shadow algorithm, graphics hardware.

Ç

1 INTRODUCTION

SYNTHESIZING realistic images requires faithful simulation
of the interactions of light and matter at all relevant

scales, which is very challenging due to the large
representation gaps between these scales. Many existing
rendering techniques are limited to effects at a single scale.

Based on precomupted radiance transfer [2], or PRT, Sloan
et al. propose biscale radiance transfer [3] to model radiance
transfer at two scales. The main idea is to decompose the
radiance transfer function into a global part, which is
represented in a macroscale and coarsely sampled at each
vertex, and a local part, which is represented in a mesoscale,
densely sampled at each pixel and mapped over the object.
The biscale transfer is then combined at run time to render
self-shadowing and interreflection effects at both scales.
Due to the low-order spherical harmonics (SH) used to
represent lighting and transfer, the method is limited to
very blurry shadows and matte materials. Sometimes it is
not sufficient to reveal the fine details of the object surface
and the relationship between the lighting and different
parts of the object, as Fig. 1a shows.

PRT has also been extended to all-frequency illumina-
tion, by representing the lighting and transfer with wavelets
[4], [5], [6], [7], or spherical radial basis functions [8]. These
techniques, however, compute per-vertex shading and
would be impractically expensive if the fine details such
as in Fig. 1c are to be rendered.

We propose a real-time algorithm for all-frequency
biscale radiance transfer rendering. The algorithm renders
hard and soft shadows at both macroscale and mesoscale
(Fig. 1b), and supports arbitrary materials.

The main challenge of all-frequency biscale radiance
transfer is the precomputation and storage of the macro-
scale transfer function, which is defined in a 6D space
formed by global incident direction, local incident direction,
and surface position. To capture all-frequency occlusion
and reflection effects, each dimension has to be sampled at a
reasonable rate. This makes the transfer function very costly
to be precomputed, stored or manipulated at runtime.

We represent the light and transfer in a pixel basis, and
compress the macroscale transfer matrix by a novel
biclustering technique, which reduces both the storage
and runtime computation cost and enables real-time
rendering of all-frequency biscale radiance transfer.

A pixel basis is poor in representing smooth functions, as
pointed out by Ng et al. [4]. In our case, however, the
transfer function is not a smooth one, because the
reflectance term is decoupled from the macroscale transfer
function, and the transfer function is determined by
visibility, rotation and down-sampling. As a result, the the
transfer function is a coarsely discretized spherical function
that tends to form blocks (Section 4.1). We exploit this
property in biclustering (Sections 4.2 and 4.3) to losslessly
compress the transfer function.

Compared with existing transfer matrix compression
techniques such as clustered principal component analy-
sis(CPCA) [1], [6], biclustering takes advantage of specific
properties of the transfer matrix, and it also better adapts to
different levels of available coherence. As a result, a more
efficient compression is achieved, as will be demonstrated
in Section 6.

64 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 1, JANUARY 2011

. X. Sun is with the State Key Laboratory of CAD&CG, Zhejiang
University, and with Microsoft Research Asia, 5081, Sigma Building,
Zhichun Road 49, Haidian District, Beijing 100190, China.
E-mail: sunxin@microsoft.com.

. Q. Hou is with the Tsinghua University, 5036, Sigma Building, Zhichun
Road 49, Haidian District, Beijing 100190, China.
E-mail: hqm03ster@gmail.com.

. Z. Ren is with the Microsoft Research Asia, 5084, Sigma Building,
Zhichun Road 49, Haidian District, Beijing 100190, China.
E-mail: renzhong@microsoft.com.

. K. Zhou is with the State Key Laboratory of CAD&CG, Zhejiang
University, ZiJinGang Campus, HangZhou 310058, China.
E-mail: kunzhou@acm.org.

. B. Guo is with the Microsoft Research Asia, and with the Tsinghua
University, 5142, Sigma Building, Zhichun Road 49, Haidian District,
Beijing 100190, China. E-mail: bainguo@microsoft.com.

Manuscript received 12 Feb. 2009; revised 6 July 2009; accepted 12 Nov. 2009;
published online 7 Apr. 2010.
Recommended for acceptance by K. Bala.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-02-0028.
Digital Object Identifier no. 10.1109/TVCG.2010.58.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

2 RELATED WORK

Local Effects: In computer graphics, local lighting effects had
been represented by textures, bidirectional reflectance
distribution functions(BRDFs), height fields [9], or bump
maps. The bidirectional texture function (BTF) [10], which is
a 6D function that encapsulates appearance that varies
spatially and with light and view direction, is introduced to
represent more general local effects. Hardware based
techniques have been developed [11], [12] for full 6D BTFs
rendering. Lower dimensional alternatives have also been
introduced [9], [13], [14] to reduce the storage and
rendering cost. BTF capturing [10], [15], synthesis [12],
[16], and editing tools [17], [18] have also been proposed,
and a wide variety of BTFs are available for representing
different kinds of material appearance. See the survey by
Müller et al. for a good overview [19].

More general representations include the shell texture
function [20], view-dependent displacement map [21], and
generalized displacement maps [22]. These representations,
though being able to capture more general local effects such
as subsurface scattering and fine-scale silhouettes, are also
more expensive to store and/or render, and are not as
widely used as BTFs.

Recently, Sloan et al. proposed to fit the precomputed
transfer function of local features by zonal harmonics,
which can then be rotated efficiently at runtime for
multiplication with the global incident lighting [23],
represented in spherical harmonics.

These methods focus on reflectance representation and
rendering of lighting effects caused by local radiance transfer.

Wang et al. render shadows at both scales [24] by
introducing a 4D mesostructure distance function (MDF)
representation. It is limited to simple lighting sources like
point lights, since rendering is based on shadow mapping
and accumulation over complex light sources is not
affordable for interactive applications.

Global Effects: Realistic rendering of global effects under
complex lighting requires integration over the incident
directions, which is expensive if conducted directly. Sloan
et al. solve the light integration problem by an offline
tabulation of an object’s response to low-frequency lighting
[2], represented by SH, and turn the runtime integration
into a linear combination of the responses to each SH basis
lighting. Exploiting the coherence among vertices, compres-
sion methods are introduced using PCA [25] or CPCA [1].

We take a different approach for both transfer representa-
tion and compression and achieve higher rendering quality
at the same storage cost.

Traditional PRT has been extended to fine, repetitive local
details. By combining the local and global radiance transfer
[3], self-shadowing and interreflection effects at both macro-
scale and mesoscale can be rendered in realtime, yet only
under low-frequency environment lighting. Our method
extends the low-frequency biscale transfer to all-frequency,
and supports both accurate shadows and complex materials.

PRT has also been extended to handle all-frequency
shadows by using a nonlinear wavelet approximation [4],
albeit with either fixed lighting or viewpoint. This limitation
has been overcome by factoring the transfer function into a
visibility term and a reflectance term and computing at
runtime a wavelet triple product of lighting, visibility, and
reflectance to yield the outgoing radiance [5]. A similar
approach can be difficult to apply to our transfer matrix, since
unlike the reflectance function, the rotation from a global
coordinate frame to a local coordinate frame for each vertex is
defined in 6D space, and is still too expensive to precompute.

Another dimensionality reduction technique is based on
decomposition of the BRDF, which has been used in many all-
frequency PRT algorithms [6], [7], [8], [26], [27]. It is not clear
how this technique could be used in our case, since the
reflectance function has already been decomposed to mesos-
cale and the rotation term in the transfer function depends on
the surface location, making the decomposition infeasible.

Xu et al. [28] exploit the coherence in directions of both
lighting, visibility, and BRDF, corresponding to the coher-
ence in the rows of our transfer matrix, and enables object
rotation in all frequency rendering of dynamic scenes and on-
the-fly BRDF editing. Our method exploits coherence in both
rows and columns and can tackle transfer matrix of higher
dimensionality, which enables biscale radiance transfer.

Garg et al. [29] leverage the symmetry and data-
sparseness of the transfer matrix and represent it using
hierarchical tensors. The fourth-order tensor representing
the light transport is recursively divided into 16 children
until the node can be represented using rank-1 approxima-
tion. The nodes in that hierarchy are subblocks formed by
neighboring rows and columns. The characteristic of the
transfer matrix in our case is different from theirs, which
will be shown in Section 4.1, due to the asymmetry of the
input and output of the transfer. Thus we take a different
approach to compress the transfer matrix.

SUN ET AL.: RADIANCE TRANSFER BICLUSTERING FOR REAL-TIME ALL-FREQUENCY BISCALE RENDERING 65

Fig. 1. A Stanford bunny with a bumpy surface illuminated by environment lighting. Note how our all-frequency algorithm more faithfully captures the
shadowing effects at both global and local scales, as compared with the low-frequency biscale algorithm [1]. (a) SH [1]. (b) Biclustering.
(c) Reference.

Recently, an all-frequency shadow algorithm for dy-
namic scenes has been proposed [30]. Global incident
radiance is approximated by a small number of area light
sources, and extended convolution shadow maps [31] are
used to render the shadows generated by each of these light
sources. No precompuatation is needed for the visibility
and dynamic scene objects can be supported. The algo-
rithm, however, focuses on shadow rendering instead of
local reflectance. Integration of the BRDF across the light
source domain is not supported, and the BRDF in the
direction of the center of each area light is evaluated to
weight the contribution. It is not clear if complex materials
such as shown in this paper can be supported.

Integration of mesoscale surface details into the PRT
framework has recently been shown possible [32] by
exploiting a clustered piecewise constant representation for
the visibility and lighting. Precomputation of this represen-
tation for the 4D BRDF, however, is already prohibitively
expensive so that it is evaluated dynamically at the cluster
centers. In our approach, the global radiance transfer matrix
are compressed instead of approximated, and the local
response encoded in the 6D BTF is precisely rendered.

Biclustering: Biclustering is a technique which has been
extensively used in biological data analysis to find sub-
matrices where the genes exhibit highly correlated activities
for every condition, For more details, see a recent survey by
Madeira and Oliveira [33]. We apply the idea to transfer
matrix compression and develop a novel algorithm for
bicluster construction and real-time rendering.

3 OVERVIEW AND TERMINOLOGY

We use math italics for scalars, 3d points or vectors (e.g., x,
p), boldface italics for higher dimensional vectors (e.g., LL),
and sans serif for matrices or biclusters (e.g., T, B). A
submatrix is noted as T½j1; . . . ; jr; k1; . . . ; kl�, where j1; . . . ; jr
are the row indices and k1; . . . ; kl are the column indices.

As in low-frequency biscale rendering [3], we decouple
the coarse (PRT) and fine (BTF) radiance transfer in
precomputation and combine the transfer at both scales at
runtime. In a preprocess, we compute and store the matrix
that transfers the source lighting, represented in the global
coordinate frame, into the local frame of each vertex. Both
visibility and rotation are incorporated into the transfer
matrix, and macroscale shadowing effects are captured.

As depicted in Fig. 2, the global incident radiance
function LL is transferred to each vertex by a multiplication
with the transfer matrix:

LL�p ¼ TpLL: ð1Þ

We use the vector form (such as LL) to indicate a spherical
function (such as Lð!iÞ) represented in any basis defined on
the sphere. And “*” is used to emphasize that LL�p is defined
in the local coordinate frame of p. Tp is the transfer matrix
sampled at p, which will be explained in more detail below.

It is sometimes more convenient to use the compact form
of (1), which simply packs the LL�p vectors for all vertices in
the scene into a single vector LL�:

LL� ¼ TLL: ð2Þ

The mesoscale transfer is computed per pixel to capture
the finer variations of the mesostructures on object’s

surface, as shown in Fig. 2. More precisely, for each pixel
x, shading is computed as

Bðx; eÞ ¼
X
d

bðu; e; dÞL�ðx; dÞ ¼ bbðu; eÞ � LL�ðxÞ; ð3Þ

where Bðx; eÞ is the outgoing radiance, b is the 6D BTF, u is
a 2D texture coordinate and e is the view direction, d is the
direction of the incident radiance. Note that e and d are both
defined in the local coordinate frame of the point

corresponding to x. L�ðx; dÞ is the local incident radiance
at pixel x. The last part of (3) is a reformulation in vector
form. The per-pixel local incident radiance vector LL�ðxÞ can
be obtained by interpolating LL�p defined at each vertex.

We choose the pixel basis to represent both lighting and
transfer. In other words, each component of LL is simply the
sampled incident radiance value of the corresponding pixel
on the direction cubemap.

Note that (3) requires L�ðx; dÞ to be sampled at the same
set of directions as bðu; e; dÞ. Assuming the BTF is sampled
at M incident radiance directions, LL�ðxÞ is M-dimensional,
and so is LL�p. The light source Lð!iÞ, on the other hand, is
often discretized in a higher resolution (N sample direc-
tions, N > M). The vertex transfer matrix Tp is a M �N
transfer matrix, with its element ðj; kÞ representing the
contribution of the global incident radiance at direction k to
the local incident radiance at direction j. For a scene with n
vertices, the T is Mn�N .

The transfer matrix T is very large, due to the high-
dimensional nature of the transfer function. For example,
for a moderate scene configuration with 15k vertices, 6�
32� 32 source lighting directions and 8� 8 BTF lighting
sample directions, T has nearly 6 billion entries. Though
sparse, it is still quite cumbersome to store or relight with.

To compress T and accelerate runtime multiplication, we
decompose it into a number of submatrices, in a way that
minimizes the computation cost of (2). The decomposition,
which will be described in detail in the next section, is
conducted as a preprocess and is referred to as the
biclustering of the transfer matrix.

4 PRECOMPUTATION

In a preprocess, we construct the transfer matrix Tp at each
vertex to obtain the overall transfer matrix T, on which a

66 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 1, JANUARY 2011

Fig. 2. Transfer the global incident radiance LL to the local coordinate
frame of p, yielding the local incident radiance LL�p. Per-pixel shading is
then computed by integrating the product of BTF and LL�p.

greedy iterative search is performed to yield a compact
bicluster representation.

4.1 Transfer Matrix Construction

For a given local incident direction dj at vertex p, the
transfer matrix element ðTpÞjk represents the contribution of
the global incident direction dk. In other words, the element
indicates how much of the global incident radiance at dk
would reach the local incident radiance direction dj.

The construction of the transfer matrix is depicted in
Fig. 3. We rasterize a high resolution visibility hemicube at
each vertex p, and down-sample it to the same resolution
as the environment lighting. Each pixel of the cubemap
corresponds to an incident radiance direction. These
directions are iterated to evaluate their contribution to
each local incident radiance direction dj.

At each incident direction dk, we first check the visibility,
and totally blocked directions are bypassed. We find the
nearest local incident radiance direction dj and set ðTpÞjk to
the visibility value at dk.

Note that the local incident radiance directions dj are
defined in p’s local coordinate frame and to find the nearest
dj for global incident radiance direction dk we need to rotate
all the local incident radiance directions to the global
coordinate frame.

Fig. 3a shows a particular local incident radiance direction
dj at vertex p with the contributing cubemap directions
shown in red. These contributing directions correspond to
elements in the jth row of the transfer matrix. After all
vertices are processed, we pack the transfer matrices Tp to
obtain the overall transfer matrix. We show the transfer
matrix for this example in Fig. 3b, and the corresponding row
for the direction in Fig. 3a is highlighted in red.

Due to the down-sampling, the visibility at each pixel
can have values other than 0 and 1. Generally, if we perform
2m � 2m down-sampling, the number of possible visibility
values is 22m þ 1.

One alternative representation for the radiance transfer
would be to store the down-sampled visibility vectors and
the rotation matrix as reshuffling vectors. This, however,
swaps the order of down-sampling and rotation, and the
low sampling rate of the rotation will introduce noticeable
rendering artifacts.

From the small example in Fig. 3, we see two properties of
the transfer matrix. First, the transfer matrix is very sparse.
Actually, only 0.69 percent of the elements are nonzero. This
can be easily understood: for a given local incident radiance
direction, only a small number of directions on the source
lighting cubemap may contribute. The sparsity alone,
however, still does not make the transfer matrix tractable,
since there are still tens of millions of entries to be stored and
multiplied with the incident radiance at runtime.

Second, we see regularity in the distribution of the
nonzero entries—they tends to form blocks. This regularity
is due to the structure in visibility and the distribution of
normal directions of vertices. Note that unlike in the
transfer matrix between symmetric incident and exitant
light field, where the matrix entries tend to form continuous
subblocks that can be well approximated using rank-1
factors [29], the “blocks” here might be discontinuous, since
the transfer is between the incident 2D environment
lighting and exitant 4D surface light field and we do not
take interreflections into account. This kind of regularity
inspires us to use a biclustering technique to exploit the
coherence in arbitrary rows and columns. Unlike CPCA,
which exploits the coherence between elements of fixed size
(the rows), we use biclusters, whose size can adapt to the
available coherence. This, joined with exploiting the limited
number of possible matrix entries, makes it possible for us
to develop a technique that provides higher compression
rates than existing techniques such as CPCA and wavelet.

4.2 Bicluster

The most straightforward way to exploit the coherence in
the transfer matrix would be to extract submatrices having
constant entries. This simple clustering approach however
tends to yield a large number of very small clusters and we
instead seek a more general representation for the coher-
ence, and we found the biclustering technique that is
extensively used in biological data analysis is very suitable
for our purpose.

We base our algorithm on a very simple observation.
Suppose we have a submatrix of T formed by selecting the
j1; j2; . . . ; jr rows and the k1; k2; . . . ; kl columns from T,
noted as T½j1; j2; . . . ; jr; k1; k2; . . . ; kl�. If each column of the
submatrix is composed of elements of a constant value:

Tj1km ¼ Tj2km ¼ � � � ¼ Tjrkm ¼
4
tm; 8m 2 f1; 2; . . . ; lg ð4Þ

then we have

T½j1; . . . ; jr; k1; . . . ; kl�LL½k1; . . . ; kl� ¼ ½a . . . a
zfflffl}|fflffl{r scalars

�T ;
a ¼ t1Lk1

þ t2Lk2
þ � � � þ tlLkl :

ð5Þ

SUN ET AL.: RADIANCE TRANSFER BICLUSTERING FOR REAL-TIME ALL-FREQUENCY BISCALE RENDERING 67

Fig. 3. An example of transfer matrix construction. A small patch of
76 vertices is used to show the process. (a) A small patch and a sample
vertex, together with a particular local incident direction. (b) Transfer
matrix and the corresponding row.

The submatrix that satisfies (4) can be represented as a
constant column bicluster, or simply bicluster. And we call
such a submatrix a bicluster submatrix. A bicluster is
determined by the row indices and the column indices of
the submatrix, plus the values of each column t1; t2; . . . ; tl.

Given a bicluster B½j1; . . . ; jr; k1; . . . ; kl; t1; . . . ; tl� belongs
to a Mn�N transfer matrix, we can define its multi-
plication with a N vector LL

ðBLLÞj ¼
Pl

m¼1 tmLkm if j 2 fj1; j2; . . . ; jrg
0 otherwise

(

j ¼ 1; 2; . . . ;Mn;

ð6Þ

yielding a M � n vector. Note we only need l floating point
multiplications and l� 1 additions, as well as r additions to
accumulate the resulting vector of (6). We define the cost of
a bicluster as

WðBÞ ¼ rþ 2l� 1; ð7Þ

reflecting the number of FLOPs involved in the bicluster
multiplication with B.

By decomposing the transfer matrix into bicluster sub-
matrices, we can obtain its bicluster representation. Notice that
an 1� 1 submatrix of T can be represented by a smallest
bicluster described by three scalars. This guarantees the
existence of a bicluster representation for any given T. What
we need though is an optimal biclustering of the transfer
matrix that minimizes the runtime computation cost.

4.3 Transfer Matrix Biclustering

Given the transfer matrix T, the biclustering of T is a set of
biclusters Bi that satisfies

TLL �
X
i

BiLL; 8LL: ð8Þ

We want to find the biclustering that minimizes
P

i WðBiÞ.
It has been shown that such a biclustering of a matrix is

NP-complete [33]. In this section, we describe a greedy
iterative algorithm for transfer matrix biclustering.

Qualitatively, when possible, we want to look for larger
biclusters, which provide higher reduction in computation
and storage. However, looking for submatrices that strictly
satisfy (4) tends to yield very small biclusters, weakening
the effectiveness of biclustering. An important observation
is that we can decompose any submatrix into a bicluster
submatrix and a residual submatrix. Below is an example.

1 1
2

3
4 1

1 3
4

3
4 1

1 1
2

3
4 0

2
4

3
5 ¼ 1 1

2
3
4 1

1 1
2

3
4 1

1 1
2

3
4 1

2
4

3
5þ 0 0 0 0

0 1
4 0 0

0 0 0 �1

2
4

3
5

This allows us to find a larger bicluster submatrix, paying
the price that the additional nonzero elements in the residual
submatrix should be handled in later iterations. But that is a
reasonable trade-off as long as we can keep the number of
nonzero elements in the residual submatrix small.

We start from a randomly chosen element, which is a 1� 1

bicluster submatrix itself, then iteratively try to insert (delete)
rows or columns into (from) the current bicluster submatrix.
Every insert or delete operation produces a new bicluster
submatrix that changes the total computation required by the

matrix-vector multiplication (8). We evaluate the changes
and select the operation that reduces the computation most.

Operations are performed iteratively to improve the
current bicluster submatrix until no more computation
reduction is possible. As a bicluster is produced, the
corresponding submatrix is subtracted from the transfer
matrix. The algorithm terminates when all the remaining
elements in the transfer matrix become zeroes.

The most important issue is how to evaluate the
computational change that is related with a particular
submatrix and its bicluster representation. For a given r� l
submatrix M and its bicluster representation B, the floating
point operations related to the submatrix is 2nnzðMÞ, where
the nnzðMÞ is the number of nonzero elements of M. This
accounts for a per-element multiplication and addition that
are involved in the matrix-vector multiplication. The
operations involved in the corresponding bicluster multi-
plication is WðBÞ ¼ rþ 2l� 1. If a residual submatrix exists,
then every nonzero element in the residual submatrix MR

requires another addition and multiplication. Thus, the
change in computation cost can be evaluated as

�WðMÞ ¼ 2nnzðMÞ � ðrþ 2l� 1Þ � 2nnzðMRÞ ð9Þ

�WðMÞ is a measurement of the change of the required
FLOPs due to representation transfer. It can be either
negative or positive.

We list the pseudo code for transfer matrix biclustering
in Algorithm 1. Note that for “possible operation” in line 8,
we refer to the insertion of a new row/column to the
current bicluster matrix or the deletion of an existing row/
column from it. For deletions, the corresponding nonzero
elements in the residual submatrix are absorbed. Note that
Tb is usually smaller than Tc and the matrix subtraction in
line 16 means subtracting the elements of Tb from the
corresponding elements of Tc.

Algorithm 1. Pseudo code for transfer matrix biclustering

Input: transfer matrix T

Output: fBig, a biclustering of T

1: Tc T.
2: if nnzðTcÞ ¼ 0 then

3: terminate

4: end if

5: Randomly choose a nonzero element ðTcÞjk
6: Tb Tc½j; k� {initialed as an 1� 1 matrix}

7: �Wc �WðTbÞ
8: for all possible operation f do

9: if �WðfðTbÞÞ > �Wc then

10: �Wc �W ðfðTbÞÞ
11: fc f

12: end if

13: end for

14: if �Wc ¼ �WðTbÞ then

15: Output Tb’s corresponding bicluster

16: Tc Tc � Tb

17: go to 2
18: else

19: Tb fcðTbÞ
20: go to 7

21: end if

68 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 1, JANUARY 2011

5 RENDERING

Rendering is divided into per vertex computation and per
pixel computation, corresponding to macroscale transfer
and mesoscale transfer, respectively.

We take the cubemap representation of the environment
lighting as the input light vector LL, perform the bicluster
multiplications and accumulate the results to calculateP

i BiLL. Each multiplication is computed via (6). The
resulting incident radiance vector, LL�, is packed into the
vertex buffer.

Per pixel computation is conducted on the GPU
according to (3). In a pixel shader, we take the interpolated
vertex data as the per-pixel incident radiance vector LL�i . We
also obtain the view direction and texture coordinate, which
are then used to lookup the BTF vector bbðu; eÞ. Then a
simple dot product bbðu; eÞ � LL�i is performed to yield the
shading at the corresponding pixel.

Current graphics hardware has a limitation on the
number of available pixel input registers, and we cannot
process all the vertex data in a single pass. Multipass
rendering has to be conducted and alpha-blending is used
to add up the results of each pass.

6 IMPLEMENTATION AND RESULT

In this section, we will first discuss some implementation
details, and then present the experimental results.

6.1 Implementation Details

6.1.1 Data Organization

It is important to guarantee that the local incident
radiance directions are distributed evenly on the hemi-
sphere. We use a low distortion area preserving para-
meterization [34] for the incident radiance direction and
view direction hemispheres.

As depicted in Fig. 4, we pack BTFs into 3D RGBA
textures, each layer of which corresponds to a sample view
direction. For each layer, the data is organized with a
number of blocks, each of which corresponds to a sample
incident radiance direction. Thus, each of these blocks is a
sample of the patch rendered under a particular incident
directional light and view direction combination. The

interpolation across the block uses built-in hardware, and
the interpolation in the view direction is performed
manually in the pixel shader. Instead of using simple
bilinear interpolation, which leads to ghosting artifacts, we
map the view direction back to the direction sphere and
retrieve the four adjacent samples for the interpolation. No
interpolation is needed for the incident radiance directions,
since we directly transfer the global incident radiance to the
local sample incident directions.

6.1.2 Precomputation Optimization

Biclustering is the main bottleneck of precomputation. As a
simple optimization for Algorithm 1, we maintain an
influence value for each row and each column, defined as
the influence of the operations on the change of cost in (9). We
organize all row and column operations into a priority queue
according to the influence value. At every step we select the
operation at the front of the operation queue. And after an
operation is conducted, we update the affected operations in
the operation queue, and refresh the queue accordingly.

This select-conduct-update process is more efficient than
the straightforward implementation, since we do not need
to iterate all the operations to select the one that reduces the
cost most. This is achieved at the cost of updating the queue
after each operation. Fortunately, the updating process is
highly local, since each operation only affects a very small
number of operations in the queue.

The above process is repeated until the operation at the
front of the queue has negative influence on �W , when all
operations in the queue cannot reduce the overall cost
anymore. Note that during the whole process the size of the
queue remains as MnþN—the sum of column number
and row number.

For example, for a new column k0 which is not in the
current submatrix Tb½j1; j2; . . . ; jr; k1; k2; . . . ; kl�. The con-
stant value t0 is chosen to be the nonzero value that most
frequently appears in the rows j1; j2; . . . ; jr of column k0.
Then the influence of the new column to �W consists of the
cost of the column itself, which corresponds to the rþ 2l� 1
term in (9), plus the sum of the influence of each of the
elements in the rows j1; j2; . . . ; jr, which correspond to the
2nnzðTbÞ � 2nnzððTbÞRÞ term. For this new column, the cost
of the column is �2, since it causes l to increase by 1. To
compute the influence of a particular element, three
different cases need to be considered:

. if the element’s value is t0, it causes nnzðTbÞ to
increase by 1, and the influence is 2;

. if the element’s value is 0, it causes nnzððTbÞRÞ to
increase by 1, and the influence is �2;

. if the element’s value is a nonzero value other than
t0, it causes both nnzðTbÞ and nnzððTbÞRÞ to increase
by 1, and the influence is 0.

If the insertion of this new column is conducted, first, the
influence value of the column itself should be changed,
since the corresponding operation with the column has
changed from insertion to deletion. Second, influence
values of all the rows that has a nonzero element in this
column, plus the rows that the residuals in the column are
located should be changed, according to the above element
influence evaluation.

For other operations, including the deletion of an
existing column from the current submatrix and the

SUN ET AL.: RADIANCE TRANSFER BICLUSTERING FOR REAL-TIME ALL-FREQUENCY BISCALE RENDERING 69

Fig. 4. Packing a 6D BTF into a 3D RGBA texture.

deletion/insertion of rows, the influence value can be
derived similarly.

6.1.3 Rendering Optimization

Biclustering multiplication is mostly bounded by memory
access, since the computation itself is very simple. To
improve the memory access coherence, we first perform all
the bicluster multiplications BiLL. A runtime bicluster buffer
PB is maintained, each slot of which corresponds to a
bicluster. We iterate all the biclusters and calculate a single
scalar

Pl
m¼1 tmLkm (6) for each of them. At the end of this

iteration we have the result of all required bicluster
multiplications in the buffer.

Then we need to accumulate the products to appropriate
local incident radiance directions. For each direction(row) j,
we store the indices of all the related biclusters in Ij, which
are then used to access the bicluster buffer and sum up the
products. The pseudo code is listed in Algorithm 2.

Algorithm 2. Pseudo code for computing
P

i BiLL

Input:

fBig, transfer matrix biclustering

LL, lighting vector

Output:

LL�, local incident radiance vector

1: for all bicluster index i do

2: ðPBÞi
Pl

m¼1 tmLkm {ftmg; fkmg in Bi}

3: end for

4: for j ¼ 1 to Mn do

5: L�j ¼ 0

6: for k ¼ 1 to Kj do

7: {Kj: number of biclusters for row j}

8: i ðIjÞk {Ij: related bicluster’s indices}

9: L�j L�j þ ðPBÞi
10: end for

11: end for

We implement the above computation by CUDA [35],
and pass the result to the final BTF shading by CUDA-
OpenGL interoperatability routines.

Another easy optimization is to reuse the local incident
radiance vector if only the view direction is changed. In the
results presented in Section 6, we will list the fps numbers
for lighting and view changes separately.

6.2 Results and Comparisons

6.2.1 Platform

We implemented our system on a workstation with a 3.00
GHz Quad Xeon CPU, 4 GB RAM, and a NVidia GTX 280
graphics card. We use CUDA to compute the incident
radiance of all vertices and render the shading of BTF
with OpenGL.

6.2.2 Comparison with Low-frequency Biscale

Rendering

In Fig. 1, we compare our rendering result with low-
frequency biscale rendering [3]. In the global scale, we can
see a more accurate shadowing effect, especially for the
bunny’s ears, while in the local scale, a better perception of
the bumpy bunny surface is achieved by our result, thanks
to the more accurate capturing of the self-shadowing effects
of the surface details.

Fig. 5 shows the advantages of our algorithm over low-
frequency biscale rendering in rendering glossy materials.
The material of the chains is modeled by an anisotropic
analytic representation [36], [37]. The specularity of the
material is better captured in our result, producing a higher
shading contrast. In addition, our algorithm better captures
the thickness of the armor, thanks to the more faithful
rendering of the self-shadowing effects at the mesoscale.

6.2.3 Comparisons with Alternative Methods

One important advantage of our algorithm is the storage
efficiency. By exploiting coherence in both rows and columns
of the transfer matrix, as well as exploiting the property that
the nonzero matrix entries only evaluate to a limited number
of values, our method provide much higher quality than
alternative methods at comparable storage cost.

In Fig. 6, we compared the result generated by our
method and CPCA [1] and nonlinear wavelet approxima-
tion [4], [5]. We choose the parameters of these alternative
methods in a way that their storage costs are roughly the
same as ours (36.4 MB). Severe rendering artifacts can be
observed for both of these methods, as seen in Fig. 6c, 6d,
while ours (Fig. 6c) is almost visually indistinguishable
from the reference (Fig. 6d).

A comparison of the storage costs of these methods at the
same quality would make the comparison more complete.
The high cost of CPCA compression (more than 10 hours),
however, made such a search of parameters infeasible.

6.2.4 Parameters and Performance

Environment source lighting is represented as a cubemap of
resolution 6� 32� 32 and the dimension of the light vector
is 6,144. For visibility sampling, 2� 2 down sampling is
performed to yield 6� 32� 32 cubemaps.

The resolution of incident directions of BTFs is 8� 8,
except for the “Armor” scene, where the resolution of 12�
12 is used since the BTF used for that scene has a larger high
frequency component. The resolution of viewing directions
is 12� 12. The patch sizes used for the BTFs of all our
demos are 64� 64 or 32� 32. Other detailed settings of
parameters and performance are included in Table 1 (Note
that two performance numbers are measured for each
scene, the first one is for fixed lighting and dynamic view,
from which the cost of global transfer is excluded, and the
second is for dynamic lighting and view). The scene named
“Temple” (Fig. 7) is constructed to show our algorithm’s
ability to render multiple BTFs. Five BTFs are used for

70 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 1, JANUARY 2011

Fig. 5. Our result better captures the appearance of glossy
materials than its low-frequency counterpart. (a) SH. (b) Biclustering.
(c) Reference.

different parts of that scene, while the transfer matrix is
defined and compressed for the entire scene.

From the numbers listed in Table 1, we can see that the
efficiency of biclustering is dependent on the properties of
the scene geometry. For scenes mainly consisting of “flat”
geometries, such as “Temple,” the coherence in the transfer
matrix is very high, leading to more efficient compression.
For curved geometry, as the “Bunny,” the compression is
less effective. The cost of transfer matrix multiplication and
BTF shading are roughly comparable, and the former is
dominated by the gathering phase, in which the products in
the runtime bicluster buffer are accumulated to the
corresponding incident radiance directions. For BTF shad-
ing, the important factors are the number of pixels to be
shaded and the coherence of the BTF fetch. Denser BTF
tiling leads to lower coherence between adjacent pixels, and
in turn lower shading performance.

The biclustering algorithm scales well with the resolu-
tion of local incident directions, as shown in Fig. 8. The
storage cost of the compressed transfer matrix at the
resolution of 32� 32 is 58.5 MB, which is less than 2.5 times
larger than the storage at 8� 8. While this is partially due
to the sparsity increase of the transfer matrix, the
biclustering algorithm did achieve practical storage cost
at higher resolution. As for the rendering performance, the
interpolation and BTF shading cost scales roughly quad-
ratically with the local incident direction resolution, and
dominates the rendering cost at higher resolution. This can
be seen from the diminishing gap between the performance

of fixed and moving lighting. Note that from (a) to (b) we
observe superquadratic performance drop, mainly due to
the large BTF size which lead to worse cache hit rate in BTF
data fetches.

We have also tested the scalability with regard to scene
complexity by using the same bunny model with different
vertex number, and the result are shown in Table 2. We
obtain steady compression ratio for different vertex
numbers. The rendering performance, on the other hand,
scales roughly linearly with the vertex number.

It should be noted that our technique is orthogonal to
BTF compression techniques [38], [39], [40], since we focus
on the compression of the global transfer matrix.

7 CONCLUSION AND FUTURE WORK

In this paper, we address the problem of rendering all-
frequency biscale radiance transfer. The main challenge is the
large transfer matrix that needs to be stored and manipu-
lated. We propose a lossless compression algorithm based on
transfer matrix biclustering. We introduce a novel algorithm
for finding the optimized biclustering of the transfer matrix
and minimizing runtime computation cost. Our algorithm is

SUN ET AL.: RADIANCE TRANSFER BICLUSTERING FOR REAL-TIME ALL-FREQUENCY BISCALE RENDERING 71

Fig. 7. A temple scene with a five different BTFs. The eaves molding
uses a patch size of 64� 64, while all other parts use patches of 32� 32.

TABLE 1
Test Scene Statistics

Fig. 6. Comparisons of different compression methods of global
radiance transfer. The original transfer matrix is obtained by
precomputing for each of the 16 K vertices a transfer matrix from
the 6,144 global incident directions to the 64 BTF incident directions.
For CPCA, the rows of the transfer matrix are divided into 32 clusters,
and 8 eigen-vectors are generated for each cluster, yielding 36.2 MB
final data. For wavelet, each row of the matrix is nonlinearly
approximated by area-weighted selecting the first 12 wavelet basis
lights, yielding 37.1 MB final data. (a) Biclustering. (b) Reference.
(c) Clustered PCA. (d) Haar wavelet.

able to reduce storage and computational complexity down
to 5-30 percent, enabling real-time rendering.

For the mesoscale representation of the surface details,
though we only focus on BTFs in this paper, our algorithm is
not limited to BTF rendering. Other surface detail represen-
tations, such as VDM, normal map, spatially invariant or
variant BRDF, can all be used. For simpler representations
such as normal map or spatially invariant BRDF, our
algorithm can handle dynamic surface details, since they
are not involved in the precomputation. Fully dynamic
environment lighting can also be supported, since we
directly use the cubemap representation for the lighting.

As a limitation, our algorithm only handles distant
lighting. Also, it is difficult to incorporate global scale
interreflections, since many possible values will be intro-
duced into the transfer matrix, breaking the prerequisite of
our biclustering algorithm. Another limitation is that, as
other per-vertex PRT algorithms, we require the models to
be reasonably tessellated since the per-pixel local incident
lighting is interpolated linearly from vertex data. Signifi-
cant error can also be introduced by interpolating across
vertices that pointing in very different directions, which

could be alleviated by applying a proper cease angle as in
shading interpolation.

In future work, we are interested in developing mechan-
isms that enable trade-offs between quality and storage/
performance. Currently our method is based on a compres-
sion of the radiance transfer matrix, instead of an approx-
imation. A possible way of approximating the transfer
matrix is to ignore the residual matrices according to a
carefully designed error metric. It is also interesting to
improve the algorithm by making use of the knowledge of
lightings and BTFs.

REFERENCES

[1] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder, “Clustered Principal
Components for Precomputed Radiance Transfer,” ACM Trans.
Graphics, vol. 22, no. 3, pp. 382-391, 2003.

[2] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency
Lighting Environments,” Proc. ACM SIGGRAPH, pp. 527-536, 2002.

[3] P.-P. Sloan, X. Liu, H.-Y. Shum, and J. Snyder, “Bi-scale Radiance
Transfer,” ACM Trans. Graph., vol. 22, no. 3, pp. 370-375, 2003.

[4] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-Frequency
Shadows Using Non-Linear Wavelet Lighting Approximation,”
ACM Trans. Graphics, vol. 22, no. 3, pp. 376-381, 2003.

[5] R. Ng, R. Ramamoorthi, and P. Hanrahan, “Triple Product
Wavelet Integrals for All-Frequency Relighting,” ACM Trans.
Graphics, vol. 23, no. 3, pp. 477-487, 2004.

[6] X. Liu, P.-P. Sloan, H.-Y. Shum, and J. Snyder, “All-Frequency
Precomputed Radiance Transfer for Glossy Objects,” Proc. Euro-
graphics Symp. Rendering, pp. 337-344, 2004.

[7] R. Wang, J. Tran, and D. Luebke, “All-Frequency Relighting of
Glossy Objects,” ACM Trans. Graphics, vol. 25, no. 2, pp. 293-318,
2006.

[8] Y.-T. Tsai and Z.-C. Shih, “All-Frequency Precomputed Radiance
Transfer Using Spherical Radial Basis Functions and Clustered
Tensor Approximation,” ACM Trans. Graphics, vol. 25, no. 3,
pp. 967-976, 2006.

[9] W. Heidrich, K. Daubert, J. Kautz, and H.-P. Seidel, “Illuminating
Micro Geometry Based on Precomputed Visibility,” Proc. ACM
SIGGRAPH, pp. 455-464, 2000.

[10] K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koenderink,
“Reflectance and Texture of Real-World Surfaces,” ACM Trans.
Graphics, vol. 18, no. 1, pp. 1-34, 1999.

[11] K. Daubert, H.P.A. Lensch, W. Heidrich, and H.-P. Seidel,
“Efficient Cloth Modeling and Rendering,” Proc. Eurographics
Workshop Rendering, pp. 63-70, 2001.

[12] X. Liu, Y. Hu, J. Zhang, X. Tong, B. Guo, and H.-Y. Shum,
“Synthesis and Rendering of Bidirectional Texture Functions on
Arbitrary Surfaces,” IEEE Trans. Visualization and Computer
Graphics, vol. 10, no. 3, pp. 278-289, May 2004.

72 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 1, JANUARY 2011

Fig. 8. Glossy bumpy Stanford bunny with different resolution of local incident direction. The material used for the bunny is a Phong model with the
exponential equals to 128. As in Table 1, performance for both fixed lighting and moving lighting is shown. The transfer matrices are compressed to
24.2 MB, 38.3 MB, and 58.5 MB, at the cost of 12, 32, and 93 minutes of precomputation, respectively. The cost of computing macroscale transfer is
7.9 ms, 22.4 ms and 37.0 ms, respectively. The patch size of the BTF is 16� 16. (a) 8� 8 directions @ 277.9/86.8 fps. (b) 16� 16 directions @ 31.3/
18.4 fps. (c) 32� 32 directions @ 5.4/4.5 fps.

TABLE 2
Scalability Test Results

[13] T. Malzbender, D. Gelb, and H. Wolters, “Polynomial Texture
Maps,” Proc. ACM SIGGRAPH, pp. 519-528, 2001.

[14] M. Ashikhmin and P. Shirley, “Steerable Illumination Textures,”
ACM Trans. Graphics, vol. 21, no. 1, pp. 1-19, 2002.

[15] M.A.O. Vasilescu and D. Terzopoulos, “Tensortextures: Multi-
linear Image-Based Rendering,” ACM Trans. Graphics, vol. 23,
no. 3, pp. 336-342, 2004.

[16] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H.-Y. Shum,
“Synthesis of Bidirectional Texture Functions on Arbitrary
Surfaces,” Proc. ACM SIGGRAPH, pp. 665-672, 2002.

[17] K. Zhou, P. Du, L. Wang, J. Shi, B. Guo, and H.-Y. Shum,
“Decorating Surfaces with Bidirectional Texture Functions,” IEEE
Trans. Visualization and Computer Graphics, vol. 11, no. 5, pp. 519-
528, Sept. 2005.

[18] J. Kautz, S. Boulos, and F. Durand, “Interactive Editing and
Modeling of Bidirectional Texture Functions,” ACM Trans.
Graphics, vol. 26, no. 3, p. 53, 2007.

[19] G. Müller, J. Meseth, M. Sattler, R. Sarlette, and R. Klein,
“Acquisition, Synthesis, and Rendering of Bidirectional Texture
Functions,” Computer Graphics Forum, vol. 24, no. 1, pp. 83-109,
2005.

[20] Y. Chen, X. Tong, J. Wang, S. Lin, B. Guo, and H.-Y. Shum, “Shell
Texture Functions,” ACM Trans. Graphics, vol. 23, no. 3, pp. 343-
353, 2004.

[21] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum,
“View-Dependent Displacement Mapping,” ACM Trans. Graphics,
vol. 22, no. 3, pp. 334-339, 2003.

[22] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum,
“Generalized Displacement Maps,” Proc. Eurographics Symp.
Rendering, pp. 227-233, 2004.

[23] P.-P. Sloan, B. Luna, and J. Snyder, “Local, Deformable Pre-
computed Radiance Transfer,” ACM Trans. Graphics, vol. 24, no. 3,
pp. 1216-1224, 2005.

[24] J. Wang, X. Tong, J. Snyder, Y. Chen, B. Guo, and H.-Y. Shum,
“Capturing and Rendering Geometry Details for BTF-Mapped
Surfaces,” The Visual Computer, vol. 21, nos. 8-10, pp. 559-568, 2005.

[25] D.L. James and K. Fatahalian, “Precomputing Interactive Dynamic
Deformable Scenes,” ACM Trans. Graphics, vol. 22, no. 3, pp. 879-
887, 2003.

[26] R. Wang, J. Tran, and D. Luebke, “All-Frequency Relighting of
Non-Diffuse Objects using Separable BRDF Approximation,” Proc.
Eurographics Symp. Rendering, pp. 345-354, 2004.

[27] X. Sun, K. Zhou, Y. Chen, S. Lin, J. Shi, and B. Guo, “Interactive
Relighting with Dynamic BRDFs,” ACM Trans. Graphics, vol. 26,
no. 3, 2007.

[28] K. Xu, Y.-T. Jia, H. Fu, S. Hu, and C.-L. Tai, “Spherical Piecewise
Constant Basis Functions for All-Frequency Precomputed Radi-
ance Transfer,” IEEE Trans. Visualization and Computer Graphics,
vol. 14, no. 2, pp. 454-467, Mar./Apr. 2008.

[29] G. Garg, E.-V. Talvala, M. Levoy, and H.P.A. Lensch, “Symmetric
Photography: Exploiting Data-Sparseness in Reflectance Fields,”
Proc. Eurographics Symp. Rendering, pp. 251-262, 2006.

[30] T. Annen, Z. Dong, T. Mertens, P. Bekaert, H.-P. Seidel, and J.
Kautz, “Real-Time, All-Frequency Shadows in Dynamic Scenes,”
ACM Trans. Graphics, vol. 27, no. 3, pp. 1-8, 2008.

[31] T. Annen, T. Mertens, P. Bekaert, H.-P. Seidel, and J. Kautz,
“Convolution Shadow Maps,” Proc. Eurographics Symp. Rendering,
J. Kautz and S. Pattanaik, eds., vol. 18. pp. 51-60, 2007.

[32] E. Cheslack-Postava, R. Wang, O. Akerlund, and F. Pellacini,
“Fast, Realistic Lighting and Material Design Using Nonlinear Cut
Approximation,” ACM Trans. Graphics, vol. 27, no. 5, pp. 1-10,
2008.

[33] S.C. Madeira and A.L. Oliveira, “Biclustering Algorithms for
Biological Data Analysis: A Survey,” IEEE/ACM Trans. Computa-
tional Biology and Bioinformatics, vol. 1, no. 1, pp. 24-45, Jan.-Mar.
2004.

[34] P. Shirley and K. Chiu, “A Low Distortion Map Between Disk and
Square,” J. Graphics Tools, vol. 2, no. 3, pp. 45-52, 1997.

[35] NVIDIA, “CUDA Homepage,”http://developer.nvidia.com/
object/cuda.html, 2007.

[36] M. Ashikhmin and P. Shirley, “An Anisotropic Phong BRDF
Model,” J. Graphics Tools, vol. 5, no. 2, pp. 25-32, 2000.

[37] M. Ashikhmin, S. Premo�ze, and P. Shirley, “A Microfacet-Based
BRDF Generator,” Proc. ACM SIGGRAPH, pp. 65-74, 2000.

[38] F. Suykens, K. vom Berge, A. Lagae, and P. Dutr, “Interactive
Rendering with Bidirectional Texture Functions,” Computer
Graphics Forum, vol. 22, no. 3, pp. 463-472, 2003.

[39] M. Sattler, R. Sarlette, and R. Klein, “Efficient and Realistic
Visualization of Cloth,” Proc. Eurographics Symp. Rendering,
pp. 167-177, 2003.

[40] J. Meseth, G. Müller, and R. Klein, “Reflectance Field Based Real-
Time, High-Quality Rendering of Bidirectional Texture Func-
tions,” Computers & Graphics, vol. 28, no. 1, pp. 105-112, 2004.

Xin Sun received the bachelor’s degree and the
PhD degree in computer science from Zhejiang
University, Hangzhou, China in 2002 and 2008,
respectively. After that, he joined Internet
Graphics Group in Microsoft Research Asia as
an associate researcher. His research interests
include real-time global illumination rendering
and GPU-based photorealistic rendering.

Qiming Hou received the BS degree in the
academic talent program of Tsinghua University
(Mainland China) in 2006 and is currently work-
ing toward the PhD degree in computer science
at Tsinghua University (Mainland China). His
research interests include general purpose
processing using graphics processors,compiler
techniques, realistic rendering, and interactive
rendering. For the past three years, he has been
an intern consultant in Microsoft Research Asia.

Zhong Ren received the bachelor’s degree in
information engineering, the master’s degree in
mechanical engineering, and the PhD degree
in computer science in 2007, all from Zhejiang
University, Hangzhou, China. In 2007, he
joined Microsoft Research Asia, where he is
currently an associate researcher in the Inter-
net Graphics group. His research interests
include real-time rendering of soft shadows
and participating media, spherical harmonics

for real-time rendering, and also GPU-based photorealistic rendering.

Kun Zhou received the BS and the PhD degrees
in computer science from Zhejiang University in
1997 and 2002, respectively. He is currently a
Cheung Kong distinguished professor in the
computer science department of Zhejiang Uni-
versity, and a member of the State Key Lab of
CAD&CG. Before joining Zhejiang University, he
was a leader researcher of the graphics group at
Microsoft Research Asia. His research interests
include shape modeling/editing, texture map-

ping/synthesis, real-time rendering, and GPU parallel computing.

Baining Guo received the BS degree from
Beijing University and the MS and PhD degrees
from Cornell University. He is the assistant
managing director of Microsoft Research Asia,
where he also serves as the head of the
graphics lab. Prior to joining Microsoft in 1999,
he was a senior staff researcher with the
Microcomputer Research Labs of Intel Corpora-
tion in Santa Clara, California. His research
interests include computer graphics and visua-

lization, in the areas of texture and reflectance modeling, texture
mapping, translucent surface appearance, real-time rendering, and
geometry modeling. He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SUN ET AL.: RADIANCE TRANSFER BICLUSTERING FOR REAL-TIME ALL-FREQUENCY BISCALE RENDERING 73

