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Unbiased Photon Gathering for Light Transport Simulation
Supplementary Material

1 Computing the Angular Bound1

In this section, we will explain the mathematical details behind the2

angular bound of tentative ray tracing, which we have briefly de-3

scribed in Section 3.4 of the paper. We need to choose an angular4

bound so that Eq. (16) in the paper is analytically integrable. In5

practical implementation, the direction of a tentative ray is gen-6

erated by uniform sampling a random number in the 2D space7

of [0, 1] × [0, 1]. Therefore, we choose an angular bound within8

which the random numbers generating tentative rays cover an axis-9

aligned bounding box (AABB) in the 2D space. Then the proba-10

bility pb(x̄s′,t′−1) is the AABB area.11

Here we take two common BSDFs as examples, including the Lam-12

bertian model [Lambert 1760] and the Phong model [Phong 1975],13

and develop an AABB bound in a uniform random number space.14

The bound is both used to sample the tentative rays and compute15

the probability density integration. We also show how to handle16

BSDFs that are a linear combination of multiple components.17

1.1 Hemisphere Angular Bound18

Given a reflective material, the tentative ray zt′−1 → z is con-19

fined within the upward hemisphere defined by the surface normal20

at zt′−1. The neighborhood we wish to sample is a sphere located21

at ys′ with radius d.22

For brevity, we use the local frame {X,Y, Z} at zt′−1, where Z is23

the surface normal. The direction zt′−1 → z can be represented24

in spherical coordinates as {θ, φ}, where θ and φ are the polar and25

azimuthal angles respectively. When sampling rays, θ and φ are26

typically computed from two independent uniform random num-27

bers {rθ, rφ}28

θ = fθ(rθ), φ = fφ(rφ), (1)

where fθ and fφ are mapping functions for importance sampling.29

Since fθ and fφ are typically monotonic, an AABB bound {θ, φ} ∈30

Θ × Φ in the angular space θ × φ can be directly converted to an31

AABB bound {rθ, rφ} ∈ Rθ × Rφ in the random number space32

rθ × rφ33

Rθ =
[
f−1
θ (θ|Θ)inf , f

−1
θ (θ|Θ)sup

]
,

Rφ =
[
f−1
φ (φ|Φ)inf , f

−1
φ (φ|Φ)sup

]
, (2)

where the inf and sup subscripts refer to the lower and upper bound34

respectively.35

By definition, the mappings fθ and fφ are isometric. Therefore, the36

probability density integration pb is simply the AABB area in the37

random number space38

pb(x̄s′,t′−1) = ‖Rθ ×Rφ‖ . (3)

A simple conservative angular bound of the spherical neighborhood39
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Figure 1: Three different cases of angular bounds. (a) direction
is not bounded, as zt′−1 is inside the neighborhood. (b) only θ is
bounded, as Z-axis intersects the neighborhood. (c) both θ and φ
are bounded.

can be written for the three cases in Fig. 140 

Θ = [0, π
2

]

Φ = [0, 2π]
, if l ≤ d,

Θ =
[
0,min

(
π
2
, θc + arcsin d

l

)]
Φ = [0, 2π]

, else if d
l
≥ sin(θc),

Θ =
[
θc − arcsin d

l
,min

(
π
2
, θc + arcsin d

l

)]
Φ =

[
φc − arcsin d

l sin θc
, φc + arcsin d

l sin θc

] , otherwise,

(4)

where {θc, φc} are the spherical coordinates of the direction vector41

zt′−1 → ys′ , and l is the distance to the neighborhood center l =42

‖zt′−1 − ys′‖. In the first case shown in Fig. 1(a), zt′−1 is inside43

the neighborhood sphere, and a bound cannot be placed on {θ, φ}.44

In the second case shown in Fig. 1(b), the neighborhood sphere45

intersects theZ-axis, and only θ is bounded. In the third case shown46

in Fig. 1(c), the neighborhood sphere is well separated from the Z-47

axis, and we can bound both θ and φ. The AABB bound in random48

number space can be computed using Eq. (2), which depends on the49

BSDF importance sampling functions fθ and fφ.50

1.2 Bounds for Lambertian and Phong BSDFs51

1.2.1 Lambertian BSDF52

The Lambertian diffuse BSDF is a simple constant function53

fLambertians (ωi, ωo) = κ, (5)

where we parameterize the BSDF fs over directions. ωi corre-54

sponds to the direction zt′−1 → zt′−2, and ωo corresponds to the55

direction zt′−1 → z or {θo, φo}.56
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As the constant fs does not affect sampling, the outgoing ray di-57

rection zt′−1 → z for a Lambertian BSDF is typically importance-58

sampled from the cosine part of the geometric term59

px(zt′−2 → zt′−1 → z) ∝ cos θo. (6)

The importance function fθ can be found by inverting the cumula-60

tive distribution function61

f−1
θ (θo) = 2

∫ π
2

θo

cos θ sin θdθ = cos2θo,

fθ(rθ) = arccos
√
rθ, (7)

and fφ is simply:62

fφ(rφ) = 2πrφ. (8)

The bounds and pb can be computed using Eq. (2) and Eq. (3):63

rθ ∈
[
cos2 Θsup, cos2 Θinf

]
,

rφ ∈
[

Φinf

2π
,

Φsup

2π

]
,

pb =
(
cos2 Θinf − cos2 Θsup

)(Φsup

2π
− Φinf

2π

)
.

1.2.2 Phong BSDF64

The Phong BSDF [1975] is a perceptually based model for glossy65

reflectance, which is symmetric around the mirror reflectance di-66

rection ωr67

fPhongs (ωi, ωo) = κ cosk θo−r, (9)

where θo−r is the angle betweenωo andωr . As k is typically a large68

value which makes fs dominate px, we directly use a normalized69

version of fPhongs as the importance function and leave the cosine70

term mentioned in the previous subsection out of the sampling.71

For convenience, we first sample the angles θo−r and φo−r , then72

compute ωo from it. Similar to the Lambertian case, the importance73

function fθ can be found by inverting the cumulative distribution74

function:75

f−1
θ (θo−r) = 2

∫ π
2

θo−r

cosk θ sin θdθ = cosk+1θo−r,

fθ(rθ) = arccos r
1
k+1

θ , (10)

and fφ is the same as Eq. (8). The bounds and pb are:76

rθ ∈
[
cosk+1 Θsup, cosk+1 Θinf

]
,

rφ ∈
[

Φinf

2π
,

Φsup

2π

]
,

pb =
(

cosk+1 Θinf − cosk+1 Θsup

)(Φsup

2π
− Φinf

2π

)
.

Note that the direction ωo is sampled in the upper hemisphere de-77

fined by ωr , not the surface normal. Consequently, the direction78

may point into the surface, resulting in the measurement contribu-79

tion being constantly 0. While such rays are wasted, in practice this80

does not occur very frequently because for highly glossy surfaces81

ωo typically stays near ωr . As long as this case is tested and the82

measurement contribution is properly zeroed, the final Monte Carlo83

estimation remains unbiased.84

1.3 Bounds for Multiple Component BSDF85

Importance Sampling in General. A complex BSDF is fre-86

quently defined as a linear combination of multiple components,87

such as a diffuse one and a specular one. The formal definition is88

fs =

h∑
i=1

fs,i, (11)

where h is the number of components. The corresponding prob-89

ability density of importance sampling without angular bound can90

be also formulated with respect to the multiple components91

p =
fs∫

Ω
fsdωo

=

∑h
i=1 κipi∑h
i=1 κi

, (12)

κi =

∫
Ω

fs,idωo, pi =
fs,i
κi

, (13)

where Ω is the domain of outgoing directions. κi and pi represent92

the reflectivity and sampling probability density for an individual93

component fs,i respectively.94

Importance sampling of a multiple-component BSDF is typically95

achieved by first selecting an individual component i to sample with96

a probability proportional to the respective reflectivity values κi.97

Then the sample is generated for component i using its importance98

function pi. Formally, the importance sampling takes two steps.99

1. Randomly select one component based on reflectivity. The100

i-th component is chosen with probability101

pselect,i =
κi∑h
j=1 κj

. (14)

2. Sample a direction using the chosen component.102

What we are interested in is the acceptance probability pc for the103

hypothetical Russian roulette event (Section 3.2 of the paper). Note104

that the Russian roulette event itself only tests whether a ray hits105

a fixed spatial neighborhood, which does not depend on the BSDF106

component used to sample the ray. Consequently, we can simply107

combine the per-component probability values pci using Eq. (12)108

pc =

∑h
i=1 κip

c
i∑h

i=1 κi
. (15)

Angular Bound. For efficiency and implementation conve-109

nience, we choose to apply an independent angular bound for each110

component, as shown in Fig. 2. Mathematically speaking, this111

corresponds to applying the same importance sampling process112

to an updated set of BSDF components f̄s,i. Assuming the an-113

gular bound for each component i has already been computed as114

{Θi,Φi}, one can define f̄s,i explicitly as115

f̄s =

h∑
i=1

f̄s,i, (16)

f̄s,i =

{
fs,i, if ωo ∈ {Θi,Φi},
0, else.

(17)

2



Online Submission ID: 0266

Ω

S

Θ1×Φ1

Θ2×Φ2

Figure 2: Angular bound with two component BSDF. The bounds
of the two components are different. But the neighborhood S is
included in their intersection.

Substituting Eq. (17) into the general multi-component sampler in116

Eq. (12), we formulate the importance sampling probability for f̄s117

p =
f̄s∫

Ω
f̄sdωo

=

∑h
i=1 κip

b
i p̄i∑h

i=1 κip
b
i

, (18)

pbi =

∫
Θi×Φi

pidωo, p̄i =
f̄s,i
κipbi

, (19)

where pbi is the probability density integration of each component118

i inside its own bound, and κipbi can be thought of as an effec-119

tive reflectivity for the angularly bounded BSDF component f̄s. p̄i120

is the normalized probability density of an individual component121

f̄s,i. The importance sampling consists of the same two steps as we122

introduced for multiple components without angular bounds. How-123

ever, Eq. (14) has to be updated accordingly. Replacing the original124

reflectivity κi with the effective reflectivity κipbi , we get125

pbselect,i =
κip

b
i∑h

j=1 κjp
b
j

. (20)

Applying the same procedure to the Russian roulette probability pc126

defined in Eq. (15), we get127

p̄c =

∑h
i=1 κip

b
i p̄
c
i∑h

i=1 κip
b
i

, (21)

where p̄ci is the per-component Russian roulette acceptance prob-128

ability after applying the corresponding angular bound. By defi-129

nition, it differs from the original pci by the normalization factor130

pbi131

p̄ci =
pci
pbi
. (22)

Substituting Eq. (22) into Eq. (21), we get132

p̄c =

∑h
i=1 κip

c
i∑h

i=1 κip
b
i

. (23)

Finally, we can compare pc in Eq. (15) with p̄c in Eq. (23) to define133

the multi-component normalization factor pb134

pb =
pc

p̄c
=

∑h
i=1 κip

b
i∑h

i=1 κi
. (24)

Note that pb only depends on the analytically computed pbi and the135

input constants κi. Consequently, pb itself can also be evaluated136

analytically, which is a requirement for UPG to remain unbiased.137

To conclude, when applying UPG to a multi-component BSDF, we138

first randomly choose a bounded component f̄s,i with probability139

pbselect,i defined in Eq. (20). We then sample a tentative ray from140

the per-component probability density p̄i, which is achieved by141

confining the ray direction within the corresponding angular bound142

{Θi,Φi}. The resulting Bernoulli trial countNb is finally scaled by143

a factor 1/pb to compute an unbiased estimation of the probability144

reciprocal r, where pb is computed using Eq. (24).145

Note that the sampling cost is O(h). While h is typically a small146

constant in the original scene description, it can become very large147

when UPG is combined with particle-guided BDPT, where the im-148

portance sampling function is represented as a Gaussian mixture149

model potentially reaching hundreds of components. This currently150

prevents us from combining the two algorithms efficiently.151

2 Reciprocal of an Integral152

In this section, we briefly introduce the unbiased algorithm153

for estimating the reciprocal of a general integral proposed by154

Booth [2007], and discuss its relationship with our method pro-155

posed in Section 3.4 of the paper.156

Given a non-negative function f(x) defined in a domain Ω,157

Booth [2007] aimed to evaluate the reciprocal of its integral158

I =
1∫

Ω
f(x)dx

. (25)

Assuming
∫

Ω
f(x)dx ∈ (0, 1), Eq. (25) can be evaluated as a series159

expansion:160

I =
1

1− g =

+∞∑
i=0

gi, (26)

g = 1−
∫

Ω

f(x)dx.

Reorganizing the infinite series and taking an independent Monte161

Carlo estimation for each occurrence of g, we have162

Î = 1 +

+∞∑
i=1

i∏
j=1

ĝj , (27)

ĝj = 1− f(xj),

where {xj} is an infinite set of stochastic samples in Ω, and we163

assume
∫

Ω
1dx = 1.164

The series can be terminated using Russian roulette once
∏i
j=1 ĝj165

falls below a pre-specified threshold. However, in our case, f is the166

binary outcome of a Bernoulli trial, and ĝj always takes a value of167

0 or 1. Therefore, the series in Eq. (27) degenerates into a counting168

process. Assuming the series of Bernoulli trials succeeds for the169

first time after N tries, we have:170

ĝj =

{
1, j < N

0, j ≥ N
, (28)

Î = 1 +

N∑
i=1

i∏
j=1

ĝj = N,

which is identical to our algorithm in Section 3.4 of the paper.171
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