
ACM Reference Format
Sun, X., Zhou, K., Stollnitz, E., Shi, J., Guo, B. 2008. Interactive Relighting of Dynamic Refractive Objects.
ACM Trans. Graph. 27, 3, Article 35 (August 2008), 9 pages. DOI = 10.1145/1360612.1360634 http://doi.
acm.org/10.1145/1360612.1360634.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2008 ACM 0730-0301/2008/03-ART35 $5.00 DOI 10.1145/1360612.1360634
http://doi.acm.org/10.1145/1360612.1360634

Interactive Relighting of Dynamic Refractive Objects

Xin Sun∗ Kun Zhou† Eric Stollnitz ‡ Jiaoying Shi∗ Baining Guo†

∗Zhejiang University †Microsoft Research Asia ‡Microsoft Research

(a) (b) (c)

Figure 1: Renderings produced by our technique at interactive rates.

Abstract

We present a new technique for interactive relighting of dynamic
refractive objects with complex material properties. We describe
our technique in terms of a rendering pipeline in which each stage
runs entirely on the GPU. The rendering pipeline converts surfaces
to volumetric data, traces the curved paths of photons as they refract
through the volume, and renders arbitrary views of the resulting ra-
diance distribution. Our rendering pipeline is fast enough to permit
interactive updates to lighting, materials, geometry, and viewing
parameters without any precomputation. Applications of our tech-
nique include the visualization of caustics, absorption, and scatter-
ing while running physical simulations or while manipulating sur-
faces in real time.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: refractive objects, ray tracing, photon tracing, interac-
tive relighting

1 Introduction

The refraction and scattering of light as it passes through different
materials results in many beautiful and intriguing effects, ranging
from mirages and sunsets to the caustic patterns produced by a crys-
tal vase or water waves. Simulating these phenomena in computer
graphics remains a challenge, particularly when the goal is to render
at interactive rates in dynamic scenes where the lighting, materials,

† e-mail: kunzhou@acm.org, bainguo@microsoft.com
‡ e-mail: ericsto@microsoft.com

and geometry may all be changing. Users want to see the effects of
refraction while animating objects, editing shapes, adjusting lights,
and running physical simulations, but current techniques fall short.

The most interesting phenomena depend on indirect lighting, and
therefore we need to solve a global illumination problem. In fact,
the key challenge is to calculate a global illumination solution accu-
rately enough to capture detailed caustics, yet quickly enough that
we can change the lights, geometry, and materials in real time. Al-
gorithms such as distribution ray tracing, Monte Carlo simulation,
and photon mapping are widely used to produce accurate results,
but not at interactive rates. Although the GPU has been used to sig-
nificantly accelerate both photon mapping [Purcell et al. 2003] and
wavefront-tracking techniques [Ihrke et al. 2007], the frame rates
are still not sufficient for interactive relighting. There are several
methods that generate approximate solutions in real time [Davis
and Wyman 2007; Ernst et al. 2005; Krüger et al. 2006], but these
approaches invariably neglect some of the important effects of re-
fraction. In short, none of the existing techniques is well-suited to
the interactive relighting of dynamic refractive objects with com-
plex material properties.

In this paper, we describe a new technique for rendering scenes con-
taining inhomogeneous refractive objects. Our approach is unique
in its ability to render volumetric caustic, scattering, and absorp-
tion effects interactively, even as the scene changes. We tackle the
problem by creating a new rendering pipeline, relying on the GPU
for each of its stages in order to visualize these effects without any
precomputation. The speed of our approach hinges on our use of
a voxel-based representation of objects and illumination. We de-
signed our rendering pipeline to start with on-the-fly voxelization,
so that we can maintain a volumetric representation even when the
input geometry is changing. Using this voxel-based representation
allows us to fully exploit the GPU’s parallelism in each of the sub-
sequent pipeline stages.

For each frame, the pipeline voxelizes the input surfaces, traces
photons to distribute radiance throughout the scene, and renders a
view of the resulting radiance distribution. Since we permit con-
tinuous variation in the refractive index throughout the volume,
photons and viewing rays follow curved paths governed by the ray
equation of geometric optics. Because of our voxel-based represen-
tation, we can build an octree to further accelerate our algorithm;
we use this octree to choose adaptive step sizes when propagating
photons along their curved paths. We also leverage the GPU’s ras-

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

terization speed to update the stored radiance distribution in each
step. As a result, our technique can render dynamic refractive ob-
jects such as those in Figure 1 at a rate of several frames per second.

The remainder of this paper is organized as follows: Section 2
briefly summarizes work related to ours. Section 3 provides an
overview of our rendering pipeline, while Section 4 presents each
of the pipeline stages in greater detail. Section 5 discusses some
of the issues we faced in creating a GPU-based implementation of
the pipeline. We present some results illustrating the use of our
technique in Section 6, and conclude in Section 7.

2 Related Work

Many different techniques have been used to render refractive ob-
jects. Among these, perhaps the most common approach is to use
Snell’s law at boundaries between regions of constant refractive in-
dex. Nearly all renderers derived from conventional ray tracing
[Whitted 1980] rely on this approach. Likewise, techniques that
leverage the GPU for interactive display of refraction effects typi-
cally rely on Snell’s law [Davis and Wyman 2007; Wyman 2005].
In contrast, Stam and Languénou [1996] describe how equations
derived from geometric optics can be used to trace curved light rays
through regions with non-constant index of refraction. Like Ihrke et
al. [2007], we adopt this elegant approach for volumes containing
inhomogeneous materials.

One of the important effects of refraction is the production of
caustics—bright spots resulting from light rays being focused onto
a surface or participating media. Photon maps, introduced by
Jensen [1996] as a way to accelerate Monte Carlo global illumi-
nation algorithms, have proven to be excellent at rendering caus-
tics. While photon maps were originally used to render surfaces,
subsequent work on volume photon mapping [Jensen and Chris-
tensen 1998] describes how very similar techniques can also be
used to simulate illumination effects in and around participating
media, including anisotropic multiple scattering and volume caus-
tics. Gutierrez et al. [2004; 2005] further extended volume photon
mapping to the case of non-linear light rays passing through partic-
ipating media of varying refractive index.

Much of the literature on photon mapping is devoted to off-line
rendering, where the quality and accuracy of the result is valued
over interactivity. However, Purcell et al. [2003] describe how pho-
ton mapping can be implemented on a GPU by using specialized
data structures and algorithms that are amenable to parallel pro-
cessing. Also relevant is the work by Weiskopf et al. [2004], which
presents GPU-based techniques for accelerating non-linear ray trac-
ing. Although these approaches achieve significant performance
gains compared to the corresponding CPU-based algorithms, they
fall short of delivering interactive frame rates, nor do they attempt
to render volumetric effects.

Techniques that rely on image-space rendering of refractive ef-
fects have achieved impressive results, but many of these meth-
ods exclude caustics entirely [Davis and Wyman 2007; Oliveira
and Brauwers 2007; Wyman 2005] or include surface caustics but
not volume caustics [Szirmay-Kalos et al. 2005; Wyman and Davis
2006]. Truly accurate rendering of volume caustics requires a sim-
ulation of single and multiple scattering in participating media, as
formulated by Kajiya and Von Herzen [1984]. Multiple scatter-
ing, which dominates in dense media like smoke and clouds, is
beyond the scope of the present paper. Single scattering is domi-
nant in nearly transparent materials like air and water. The shafts of
light that are typical of single scattering have been approximated by
blending layered materials [Dobashi et al. 2002], by warping vol-
umes [Iwasaki et al. 2002; Ernst et al. 2005], and by compositing
light beams into the image [Krüger et al. 2006]. These techniques

object

voxelization

photon

generation

adaptive

photon

tracing

geometry and

material

parameters

lighting

parameters photon

list

octree

construction

refractive

index

volume

radiance

storage

refractive

index

octree

viewing pass

rendered

image

viewing

parameters

Figure 2: Our rendering pipeline.

tend to trade physical accuracy for the convenience of a fast GPU-
based implementation. Sun et al. [2005] present a physically cor-
rect real-time technique for rendering single-scattering effects, but
without refraction.

The algorithm presented by Krüger et al. [2006] renders many of
the same effects as our approach, including single scattering and
refraction with multiple interfaces. However, it doesn’t account
for absorption, and like all image-space methods, it fails to cap-
ture refractions outside the view frustum, making the caustics view-
dependent. The “eikonal rendering” technique proposed recently
by Ihrke et al. [2007] comes closest to rendering all the effects of
refraction and participating media in real time. Although eikonal
rendering can produce new views at interactive rates, any change to
the lighting, materials, or geometry of the scene requires a recalcu-
lation of the radiance distribution that takes several seconds.

3 Overview of the Rendering Pipeline

We have developed a technique capable of rendering the effects of
refraction, absorption, and anisotropic single scattering in dynamic
scenes at interactive rates. Our rendering pipeline, depicted in Fig-
ure 2, consists of several stages, each of which is implemented on
the GPU. The pipeline takes as its input a volumetric or surface de-
scription of the scene, a set of point or directional light sources, and
the desired view; it produces a rendered image as its output. Note
that during an interactive session, only some of the stages need to
be executed if the application changes just the viewing parameters,
just the lighting parameters, or just the geometry and materials.

Our technique relies on a volumetric representation of space in the
form of a rectangular voxel grid; in particular, we require a voxel-
based representation of the index of refraction n, the scattering co-
efficient σ, and the extinction coefficient κ (defined as the sum of σ
and the absorption coefficient α). The first stage of our rendering
pipeline harnesses the GPU to efficiently convert triangle-mesh sur-
faces into volumetric data. This voxelization stage can be bypassed
in applications that obtain volumetric data directly from physical
simulations or measurements.

The next stage of our pipeline analyzes the index of refraction data
and produces an octree describing the regions of space in which
the refractive index is nearly constant. This information, combined
with a list of photons that we generate from the light sources, serves
as input to the adaptive photon tracing stage of the pipeline. This
stage advances each photon along its path through the scene, de-
positing radiance into all the voxels that the photon traverses. Fi-
nally, the viewing pass is responsible for rendering an image by
tracing viewing rays from the camera into the scene and calculating
the amount of radiance that reaches the camera along each ray.

Because we allow for media whose index of refraction varies con-
tinuously throughout space, both the photons and the viewing rays

35:2 • X. Sun et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

follow curved paths rather than the straight-line paths ordinarily
used in photon mapping. A curved light path x(s) is related to the
scalar field n of refractive index by the ray equation of geometric
optics [Born and Wolf 1999]:

d

ds

(

n
dx

ds

)

= ∇n . (1)

By defining v = n dx

ds
, we can rewrite Equation 1 as a system of

first-order differential equations:

dx

ds
=

v

n
(2)

dv

ds
= ∇n . (3)

Our algorithm marches along piecewise-linear approximations to
these curves using a forward-difference discretization of the con-
tinuous equations:

xi+1 = xi +
∆s

n
vi (4)

vi+1 = vi + ∆s∇n . (5)

Unlike previous work in this area, we change the step size ∆s as
we advance photons along these curves to adapt to the surrounding
variation in refractive index. In a region of nearly constant refrac-
tive index, we can take a single large step, while in a region where
the index varies greatly, we must take many small steps in order to
accurately trace the light path. We use an octree data structure to
determine how large a step we can take from any given position.

4 Rendering Pipeline Details

In the following sections, we describe in more detail each of the
stages of the rendering pipeline depicted in Figure 2.

4.1 Object Voxelization

Several algorithms have been proposed for the conversion of sur-
faces into volume data. Among these techniques, some are unsuit-
able for our purposes because they only label voxels intersected
by the surface and not those in the interior of the object [Eise-
mann and Décoret 2006; Zhang et al. 2007]. Our voxelization tech-
nique is based on the method presented by Crane et al. [2007, sec-
tion 30.2.4], which is largely similar to that of Fang et al. [2000].
Their algorithm takes a watertight triangulated surface mesh as in-
put and produces a volumetric texture as output, relying on the
GPU’s rasterization and clipping operations to assign a value of
one to voxels whose centers are inside the mesh and zero to voxels
whose centers are outside the mesh. This is accomplished by ren-
dering the mesh into each slice of the volume texture in turn, with
the near clipping plane set to the front of the slice, using a fragment
shader that increments the voxel values within back-facing trian-
gles and decrements the voxel values within front-facing triangles.
We alter the original voxelization method slightly because our ren-
dering pipeline, like eikonal rendering, requires smoothly varying
values within the refractive index volume in order to avoid undesir-
able rendering artifacts.

We want the voxelization algorithm to assign fractional coverage
values to those voxels through which the surface passes. We first
super-sample the volume by voxelizing the mesh into a texture that
is four times larger in each dimension than the output. We then
need to down-sample the resulting texture, but the cost of reading
4 × 4 × 4 = 64 texture samples for each of the output voxels can be
prohibitive. Instead, we utilize a strategy that only requires down-
sampling for output voxels near the surface. We voxelize the mesh

(a) (b)

Figure 3: (a) A triangle-mesh surface representation of an object.
(b) The same object after conversion to volumetric data by our vox-
elization method (partially cut away to show the interior).

again into a texture at the desired output resolution, then look at
a 3 × 3 × 3 neighborhood around each of the resulting voxels. If
these 27 voxels all have the same value, no further work is required.
If the voxel values differ, then we down-sample the corresponding
region of the super-sampled texture to get the fractional value.

Finally, we convert the fractional coverage values into refractive
index numbers and smooth the output texture using a Gaussian blur
kernel. The Gaussian filter’s window is 9 × 9 × 9 voxels in the
final voxel space, with a standard deviation that is one-sixth of the
window size. Note that super-sampling effectively increases the
accuracy of surface normals (as represented by the gradient of the
refractive index), while blurring spreads the boundary region over
a wider band of voxels. The result of our voxelization technique is
illustrated for a typical mesh surface in Figure 3.

We determined our supersampling resolution and Gaussian blur
kernel based on experimental renderings of a transparent sphere
in front of a patterned background. We found that the quality of
the refracted pattern improves as supersampling is increased, re-
gardless of which blur kernel is used. Once we chose 4 × 4 × 4
supersampling (the largest we deemed practical), we saw a small
improvement as the blur kernel increased in size from 5 to 7 to 9,
but no substantial change as the kernel size increased to 11. We
therefore use 4 × 4 × 4 supersampling and a 9 × 9 × 9 kernel.

4.2 Octree Construction

The input to our octree construction algorithm is a tolerance value ε
and a three-dimensional array containing the refractive index n for
each voxel of a rectangular volume. The output is a representation
of an octree within whose leaf nodes the refractive index is within ε
of being constant. Because we are using the GPU rather than the
CPU, we choose to represent the octree in a form that is appropriate
for construction and access by multiple parallel processing units.
Instead of the traditional sparse representation of an octree in which
each internal node has pointers to eight child nodes, we output the
octree as a dense three-dimensional array of numbers, where the
value in each voxel indicates the hierarchy level of the leaf node
covering that voxel. While this array may occupy more memory
than a sparse tree would, it is much more easily constructed and
accessed on a GPU.

The construction of our octree representation is similar to mipmap
construction and to the process by which Ziegler et al. build his-
togram pyramids [2007]. Figure 4 illustrates the entire octree con-
struction process, using a two-dimensional example for the sake of
simplicity. We first construct a pyramid of 3D arrays that record
the minimum and maximum refractive index present in each volu-
metric region, and then we use this pyramid along with the input
tolerance ε to decide which level of the octree is sufficient to repre-
sent each of the original voxels.

Interactive Relighting of Dynamic Refractive Objects • 35:3

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

Figure 4: Octree construction algorithm, simplified to 2D. We first
build a pyramid containing minimum and maximum refractive in-
dex values. We then analyze the pyramid from the coarsest level to
the finest, writing the current level number into the octree represen-
tation whenever the range of refractive index values is within the
input tolerance ε = 0.05.

To be more precise, assume we are given a cube-shaped volume
of refractive index entries n of size 2K in each dimension. We
start by building a pyramid of K three-dimensional arrays, much
like a mipmap, except each element stores the minimum and the
maximum index of refraction (nmin and nmax) for the correspond-
ing portion of the volume. Next, we construct another 3D array of
size 2K in each dimension, where each entry is an integer indicating
the level of the octree sufficient to represent that portion of the vol-
ume. We use zero as the label for the finest level of the octree and K
as the label for the coarsest (single-voxel) level of the octree. We
determine the appropriate labels by iterating from the coarsest level
to the finest level of the pyramid, comparing each range of refrac-
tive index to the input tolerance. While examining pyramid level k,
as soon as we encounter an entry satisfying nmax − nmin < ε,
we assign the corresponding volumetric region the label k. Once a
voxel has been labeled with a level number, we do not label it again.

In principle, we should construct the octree in such a way that both
the index of refraction n and the extinction coefficient κ are approx-
imately constant across each leaf node, since our adaptive photon
tracing algorithm is affected by both of these material properties.
We can easily extend the octree construction algorithm to limit the
variation in both properties within leaf nodes. In practice, however,
we find that the visual impact of the extinction coefficient is not
prominent enough to warrant the extra complexity.

4.3 Photon Generation

We generate the initial positions and velocities of photons using a
method similar to shadow maps: we set up the graphics pipeline
so that the camera is positioned at a light source and oriented to-
ward the volume of interest, then render the cube faces that bound
the volume. We draw into a texture, using a shader that records an

(a) (b)

Figure 5: Adaptive photon marching using an octree. (a) The pho-
ton’s position is used to determine the level of the surrounding leaf
node of the octree. (b) The step size ∆soctree is calculated to ad-
vance the photon to the boundary of the octree node.

alpha value of one along with the 3D position for each pixel rep-
resenting a front-facing surface; empty pixels are left with alpha
values of zero. Next, we transform this texture into a list of point
primitives that represent photons, using either a geometry shader
or a “scan” operation [Chatterjee et al. 1990] written in a general-
purpose GPU programming language like CUDA [Nvidia Corpora-
tion 2007]. Each pixel with non-zero alpha produces a single pho-
ton, where the photon’s position is obtained from the pixel value,
the photon’s direction is derived from the texture coordinates and
light position, and the photon’s radiance is defined by the light’s
emission characteristics.

When the scene consists of a solid transparent object, much of the
volume surrounding the object consists of empty space, where the
index of refraction is uniformly one. We can reduce the amount
of time we will spend tracing photons through this empty space by
generating the photons as close as possible to the interesting parts
of the volume. To accomplish this, we can render a proxy geometry
into the shadow map, rather than the bounding cube of the volume.
Any bounding surface will do; for a complex object, we typically
use a mesh that has been inflated to encompass the entire object.

4.4 Adaptive Photon Tracing

The goal of the adaptive photon tracing stage is to advance each
photon along its curved path, while simultaneously depositing ra-
diance into a volumetric texture for our later use. The input to this
portion of our technique consists of our octree representation of the
refractive index values, a 3D array of RGB extinction coefficients,
and a list of photons. Each of the photons is equipped with an ini-

tial position x0, direction v0, and RGB radiance value L̃0. The
output is a 3D array of RGB radiance distributions describing the
illumination that arrives at each voxel.

Each iteration of adaptive photon tracing marches the photons one
step forward according to Equations 4 and 5. For each photon, we
use the octree to determine the largest step size ∆soctree that keeps
the photon within a region of approximately constant refractive in-
dex, as shown in Figure 5. We then choose ∆s to be the larger
of ∆soctree and a user-supplied minimum step size ∆smin. The
minimum step size is typically the width of one or two voxels, and
can be adjusted by the user to trade off accuracy for performance.
Our use of the octree to determine step sizes is reminiscent of the
precomputed shells used by Moon et al. [2007] to determine step
sizes when rendering multiple scattering effects.

In each step, a photon loses a fraction of its radiance to absorp-
tion and out-scattering. The rate of exponential attenuation is de-
termined by the local extinction coefficient, which we assume to be

35:4 • X. Sun et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

approximately constant within the current octree node:

L̃i+1 = L̃i e
−κ(xi) ||xi+1−xi|| . (6)

We have described how to advance a photon by a single step, up-
dating its position and direction according to Equations 4 and 5 and
its radiance according to Equation 6. Now we turn to the accumu-
lation of radiance distributions within the volume. In each voxel,
we approximate the incoming radiance distribution by storing only
a weighted average of the direction of arriving photons and a sin-
gle radiance value for the red, green, and blue wavelengths. This is
clearly a very coarse approximation of the true distribution of radi-
ance, but it is sufficient to reproduce the effects we aim to render.

As a photon travels from xi to xi+1, it should contribute radiance
to each of the voxels through which it passes. Therefore, every time
we advance a photon by a single step, we generate two vertices into
a vertex buffer to record the photon’s old and new position, direc-
tion, and radiance values. Once all the photons have been marched
forward one step, we treat the vertex buffer as a list of line segments
to be rasterized into the output array of radiance distributions. We
rely on the graphics pipeline to interpolate the photon’s position, di-
rection, and radiance values between the two endpoints of each line
segment. We use a pixel shader that adds the photon’s radiance to
the distribution stored in each voxel, and weight the photon’s direc-
tion of travel by the sum of its red, green, and blue radiance values
before adding it to the direction stored in each voxel.

After we have advanced all the photons and stored their contribu-
tions to the radiance distributions, we eliminate each photon that
has exited the volume or whose radiance has fallen below a low
threshold value, and then we repeat the entire process. We continue
these iterations until the number of active photons is only a small
fraction (1/1000, say) of the original number of photons. As a fi-
nal step, we smooth the volume of radiance distributions using a
3 × 3 × 3 approximation of a Gaussian kernel to reduce noise.

There are several key differences between our adaptive photon trac-
ing and the approach of previous volume photon mapping algo-
rithms. First and foremost, we use an adaptive step size when
marching each photon through the volume; as mentioned earlier,
our octree structure allows us to compute the longest step that re-
mains within a region of nearly constant refractive index. Second,
we use a voxel grid to store the radiance contributed by each photon
to the illumination of the volume. We update the radiance distribu-
tion within every voxel that a photon passes through, rather than
recording radiance values only when a scattering event occurs. Pre-
vious volume photon mapping algorithms rely on a kd-tree to store
a sparse sampling of the radiance distribution, requiring a costly
nearest-neighbor search when the viewing pass needs to reconstruct
the radiance at other locations.

4.5 Viewing Pass

Once the photon tracing pass is complete, we can render images
from arbitrary viewpoints. In the viewing pass, we trace backwards
along the paths that light rays take to reach the camera, summing
up the radiance contributed by each of the voxels that we traverse,
after accounting for the scattering phase function and attenuation
due to absorption and out-scattering.

We start by initializing the origin and direction of a single ray for
each pixel of the output image. If the ray intersects the original
triangle mesh (or a proxy geometry surrounding any refractive ob-
jects), we will march along the ray step-by-step until it exits the
volume. We use Equations 4 and 5 to determine the paths taken by
viewing rays, just as we did for photons. However, when tracing

viewing rays, we use a fixed step size equivalent to the width of
one voxel rather than an adaptive step size. There are several rea-
sons to use a fixed step size: we don’t want to miss the contribution
of any of the voxels along the light ray’s path; we don’t want to
introduce image artifacts caused by different step sizes among ad-
jacent pixels; and from a practical standpoint, the viewing pass is
so much faster than the adaptive photon tracing stage that it needs
no acceleration.

At each step along a viewing ray, we look up the radiance value
and direction stored in the corresponding voxel, then evaluate the
scattering phase function to determine how much of the radiance is
scattered from the incident direction toward the camera. We multi-
ply the result by the local scattering coefficient σ(x) and the total
attenuation along the ray due to absorption and out-scattering. This
product gives the radiance contribution of a single voxel, which we
then add to the total radiance of the current viewing ray. Once the
ray exits the volume, we need only incorporate any background ra-
diance to complete the calculation of an output pixel color.

5 Implementation

We turn now to some issues that complicate our implementation.
While it is important to point out these complexities, they are not
essential to understanding the rendering pipeline.

5.1 Radiance Storage

Our GPU-based implementation of adaptive photon tracing divides
the work into the photon marching pass, which calculates the new
position, direction, and radiance of each photon after one step, and
the photon storage pass, which accumulates radiance into the vol-
ume. We originally implemented the photon marching portion of
the code using the GPU’s rendering pipeline, then re-implemented
it using CUDA and achieved a 15- to 25-percent improvement
in speed. For the photon storage part, we rely on the rendering
pipeline to rasterize line segments into the volume texture repre-
senting the radiance distributions.

One technical limitation of this process is that current GPUs can
only rasterize a line segment into a single 2D slice of a 3D vol-
ume texture. As a result, we are forced to take smaller steps than
our octree would otherwise allow. This turns out to be a critical
limitation, since photon tracing is the most expensive part of our
rendering pipeline and its cost increases linearly with the number
of steps in the photon paths. We therefore apply two strategies to
mitigate the problem:

1. Instead of storing all the photon radiance in a 3D texture with
a single slice orientation, we use a texture that has triple the
number of slices and includes slices in all three orientations
(i.e., three blocks of slices normal to the x, y, and z axes).
When a photon takes a step, we choose which portion of the
texture to rasterize the resulting line segment into based on the
direction of the photon’s motion; we use the slice orientation
in which the photon can travel farthest before exiting a slice.

2. Second, we double the effective thickness of each slice by
separating the volume texture into two render targets, one
containing the even-numbered slices and the other containing
odd-numbered slices (of all three orientations). When raster-
izing a line segment, we render into an even and an odd slice
simultaneously, using a fragment shader to draw or mask the
pixels that belong in each.

In all, we end up using four render targets because we store ra-
diance values and directions in separate textures and we split odd
and even slices into separate textures. The added costs of having

Interactive Relighting of Dynamic Refractive Objects • 35:5

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

multiple slice orientations and multiple render targets are signifi-
cantly outweighed by the speed-ups offered by longer photon step
sizes. Note that we tried using eight render targets, but the perfor-
mance decreases. The increased complexity of the fragment shader
is one cause of the slowdown; we also suspect that we are taxing
the texture-writing bandwidth of the graphics hardware.

We hope that the graphics pipeline will one day be capable of ren-
dering line segments to volume textures without being limited to a
single slice; this would negate the need for multiple slice orienta-
tions and multiple render targets. Alternatively, if CUDA offered
an atomic read-modify-write operation for textures, we could im-
plement our own line-segment voxelization code in CUDA without
having to worry about multiple photons contributing radiance si-
multaneously to the same voxel. Relying on our own line voxeliza-
tion in CUDA would eliminate the need for the large vertex buffer
we currently use to transfer information from CUDA to OpenGL.

5.2 Graphics Pipeline or General Purpose?

There are several trade-offs to consider when choosing between us-
ing CUDA (or a similar framework) for general-purpose computa-
tion on the GPU and using OpenGL (or a similar API) to access
the GPU’s graphics pipeline. CUDA clearly offers a significant
advantage to the developer when writing algorithms that don’t di-
vide nicely into a vertex shader, a geometry shader, and a fragment
shader; it makes more sense to write general-purpose code than to
massage the code into these artificially separated pieces. We can
also avoid the costs associated with texture filtering and rasteriza-
tion operations when we don’t need them.

These advantages come at a cost, however, when mixing general-
purpose computation with graphics-specific operations. In par-
ticular, roughly 10 percent of the time spent by our rendering
pipeline is devoted to copying data back and forth between CUDA
and OpenGL—currently, these technologies can share data in one-
dimensional buffers but not 2D or 3D textures. We rely on CUDA
to construct our octree, to generate photons from a shadow map,
and to advance photons through the volume; we rely on OpenGL
to voxelize objects, to create the shadow map, to rasterize photon
contributions into the volume, and to integrate radiance along view-
ing rays. The interleaving of these steps requires that we copy the
shadow map, the refractive index volume, and the extinction coef-
ficient volume from OpenGL to CUDA. Fortunately, we can share
the list of line segments generated by the CUDA implementation of
photon marching with the OpenGL implementation of photon stor-
age, but only because the list is a one-dimensional buffer. We look
forward to a future in which CUDA and OpenGL can share two-
and three-dimensional textures as well, in order to speed up our
method and others that rely on both general-purpose computation
and the graphics pipeline.

5.3 Modified Octree Construction

The appearance of caustics produced by our rendering pipeline is
quite sensitive to the photon marching step size. The step size, in
turn, is dependent on the tolerance ε used in our octree construction
algorithm. For some volumetric data, we find that it’s very diffi-
cult to choose a tolerance that yields an accurate rendering with
a reasonable number of photon marching steps. In particular, we
sometimes find that acceptable rendering quality demands such a
low tolerance that the step sizes are too small to achieve interac-
tive frame rates. A slight increase in the tolerance may cause many
octree nodes to be merged, resulting in much larger step sizes and
dramatically reduced rendering quality. We therefore modify our
octree construction algorithm slightly to produce octree nodes with
intermediate step sizes.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Two objects with refractive index of 1.1, as rendered by
(a, b) eikonal rendering; (c, d) our technique; and (e, f) ground-
truth ray tracer.

We amend our octree storage to hold in each voxel a maximum
step size ∆smax, in addition to the level number of the surrounding
leaf-level octree node. We also make a slight change to the adap-
tive photon tracing algorithm in Section 4.4: we choose the step
size ∆s by clamping ∆soctree between the user-specified minimum
step size ∆smin and the octree node’s maximum step size ∆smax.

We choose the maximum step size for each voxel during the octree
construction stage. Whenever a voxel is assigned an octree level
number because the variation in refractive index is smaller than ε,
we set the voxel’s step size limit ∆smax to infinity. If the variations
in refractive index are larger than ε but smaller than a second user-
specified tolerance ε′, then we set the voxel’s ∆smax to a finite step
size limit chosen by the user. This scheme guarantees that within
nodes of essentially constant refractive index, we advance photons
all the way to the node boundary, while within nodes with some
variation in refractive index, we limit the step size. In practice, we
typically use a primary tolerance value of ε = 0.005, and associate
an 8-voxel step size limit with a secondary tolerance of ε′= 0.02.

6 Results and Applications

To test our technique, we compared its output with that of a widely
available off-line ray tracer and that of the eikonal renderer imple-
mented by Ihrke et al. [2007]. We found that our method can more
accurately reproduce the size and shape of caustics than the eikonal
renderer, when compared to ground-truth renderings produced by a
ray tracer. Figure 6 shows two examples of such comparisons.

There are at least two reasons for the greater accuracy of our
technique. First, we accumulate the radiance contributions of all
incoming photons within a voxel, while eikonal rendering only
stores the contribution of the highest energy wavefront patch that
passes through a voxel. As a result, eikonal rendering doesn’t cap-
ture the caustics that should be generated by several low-intensity
wavefronts converging from different directions—for example, the

35:6 • X. Sun et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

(a) (b)

Figure 7: Renderings produced by our technique showing caustics
before and after an interactive change to the light source position.

bright spot in the middle of the sphere’s caustic in Figure 6. Sec-
ond, we are able to propagate photons through the volume without
any difficulty as they pass through caustics, while eikonal render-
ing suffers from malformed wavefront quadrilaterals whenever the
four corners of a patch pass through caustic singularities at differ-
ent times. Some of these malformed patches are detected and elim-
inated, resulting in an artificial loss of radiance, while those that
remain introduce numerical error visible as noisy, jagged edges in
the caustics. As an object’s index of refraction increases away from
one, the wavefronts cross earlier and the propagation artifacts be-
come increasingly visible. Photon tracing, on the other hand, pro-
duces acceptable results regardless of refractive index.

We also found that our approach is much faster than eikonal render-
ing at producing images after a change to the lighting or material
parameters. We can relight scenes like those in Figure 6 at roughly
eight frames per second, while eikonal rendering takes on the order
of seven seconds for just one frame. The key to our technique’s
performance is its use of adaptive step sizes when tracing photons.
By taking fewer steps through the volume, we generate fewer prim-
itives to be rendered, and leverage the GPU’s speed for rasterizing
line segments instead of points into the radiance storage.

Table 1 demonstrates how our algorithm’s performance depends on
several parameters, including the number of triangles in the input
mesh, the number of occupied voxels, and the number of initial
photons. The input parameters being varied are shown in blue, and
significant variations in the resulting statistics are shown in red. Be-
cause there is considerable overhead required for the transfer of data
between OpenGL and CUDA, the timing is not simply proportional
to the number of photon tracing steps. Four components of the total
time are not shown here: gradient generation after voxelization, oc-
tree construction, irradiance merging after photon tracing, and the
viewing pass. Each of these takes time proportional to the total res-
olution of the volume. The time required for the viewing pass is
also linear in the number of output pixels.

number of occupied initial millions voxeli- photon total

triangles voxels photons of steps zation tracing time

10,000 1033 10242 3.81 14.55 136.85 225.20

20,000 1033 10242 3.81 24.40 138.10 238.15

40,000 1033 10242 3.81 49.90 134.70 258.40

80,000 1033 10242 3.81 90.35 135.75 299.65

20,000 643 10242 1.12 16.40 63.55 148.00

20,000 773 10242 1.82 18.80 85.20 175.05

20,000 903 10242 2.72 21.45 108.60 201.75

20,000 1033 10242 3.81 24.40 138.10 238.15

20,000 1033 2562 0.24 25.85 63.40 159.60

20,000 1033 5122 0.95 24.90 80.10 175.95

20,000 1033 10242 3.81 24.40 138.10 238.15

Table 1: Parameter variations (in blue) and their effects on perfor-
mance (in red), for a scene that is otherwise fixed. The last three
columns give times in milliseconds.

(a) (b)

Figure 8: Painting with brushes that affect (a) absorption coeffi-
cients inside and (b) scattering coefficients outside an object.

The speed of our approach opens the door to many novel appli-
cations. While previous rendering techniques for refractive media
were capable of changing only the viewing parameters interactively,
we can now permit changes to the lighting and material parameters
as well, while still achieving interactive updates. We describe just
a few of the possible applications below, and show a summary of
their performance characteristics in Table 2.

6.1 Interactive Relighting

Our novel scheme of adaptive non-linear photon tracing allows us
to achieve interactive performance of the rendering pipeline, even
when it includes the lighting pass as well as the viewing pass. Users
of our system can freely change the positions and colors of light
sources while viewing the effects of caustics, absorption, single
scattering, and shadows. Figure 7 illustrates the effect that a change
in lighting produces in renderings of a refractive object, with vol-
ume caustics visible in the participating media.

6.2 Dynamic Materials

Our pipeline supports dynamic updates to material properties as
well as lighting. The materials within a volume are defined by three
properties: the index of refraction, the extinction coefficient, and
the scattering coefficient. Variations in the index of refraction de-
termine how light rays bend as they pass through the volume. The
extinction coefficient affects how much light propagates through
the volume from the light sources and to the camera. The scat-
tering coefficient determines how much the radiance within each
voxel contributes to the final image seen by the camera. There are
many possible ways of interactively changing the material proper-
ties within a volume; we describe below three such techniques.

6.2.1 Volume Painting

One way of editing a volumetric description of materials is by
“painting” directly into the volume. We can offer the user sev-
eral “brushes,” each consisting of a precomputed pattern of material
parameters. We allow the user to drag a brush through the larger
volume, and we add the appropriate scaled, rotated, and weighted
patterns to the material properties of the volume. The example in
Figure 8 shows some frames of a user’s interactive painting session.

6.2.2 Surface Manipulation

While volume painting is handy for populating a volume with par-
ticipating media, it’s an unwieldy approach for creating a solid ob-
ject or changing its shape. Our rendering pipeline includes a vox-
elization method capable of converting triangle meshes into volu-
metric data at interactive rates, and therefore we can integrate many
familiar surface modeling algorithms into our system while still dis-
playing the effects of refraction.

Interactive Relighting of Dynamic Refractive Objects • 35:7

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

(a) (b)

Figure 9: Volume and surface caustics produced by a refractive
object as the user applies interactive surface deformations.

We allow the user to interactively deform a refractive object and
view the effect of the deformation on the scene’s illumination. Be-
cause the combination of voxelization and rendering already taxes
current GPUs, we rely on the CPU to perform the deformation. We
apply the algorithm of Pauly et al. [2003] to deform a triangle-mesh
surface according to the user’s input, and perform our voxelization,
octree construction, photon tracing, and viewing pass to display the
result. Figure 9 shows some results of interactive deformations.

Sketch-based modeling has recently become quite popular because
it is intuitive and convenient. As shown in Figure 10, we can inte-
grate sketching into our system by using the method of Igarashi et
al. [1999] to generate a surface mesh, which we then voxelize and
send through our rendering pipeline. Indeed, any interactive sur-
face modeling technique can supply input to our rendering system,
since we have provided a general framework for voxelizing surface
meshes and rendering the resulting refractive volumes.

6.2.3 Simulation and Animation

Material properties can be driven by physical simulations of real
processes, or by animations of imagined ones. The wide range of
literature on the simulation of solid and fluid dynamics provides a
rich source of data for our rendering pipeline. For example, Fig-
ure 1 illustrates the use of our rendering technique on fluid simula-
tion data from Mullen et al. [2007] and turbulent mixing of inho-
mogeneous materials from Fedkiw et al. [2001]. It also shows an
example in which a keyframe-based animation of surfaces serves
as input to our rendering pipeline. In each of these cases, the GPU-
based pipeline can render arbitrary views of the changing material
data under dynamic lighting conditions.

number of photons millions frames

figure triangles propagated of steps per second

1 (a) – 185,000 11.5 2.00

1 (b) – 61,000 3.5 3.54

1 (c) 5,000 143,000 9.5 2.52

6 (c) – 42,000 2.8 7.90

6 (d) – 36,000 2.7 7.88

7 – 68,000 3.4 6.14

8 – 41,000 2.0 7.24

9 20,000 35,000 1.7 6.22

10 (a) 2,900 75,000 3.5 5.43

10 (b) 5,000 70,000 3.2 5.59

Table 2: Performance of our technique. Each example image was
rendered at 640 × 480 resolution using an Nvidia GeForce 8800
Ultra, starting with 1024 × 1024 photons and a 128 × 128 × 128
volume. Included are the number of triangles in the input mesh
(where applicable), the number of photons traced through the vol-
ume, the number of photon-tracing steps, and average frame rate.

(a) (b)

Figure 10: Two examples of refractive objects created using an
interactive sketching tool.

7 Conclusion

We have presented a technique capable of rendering the effects
of refraction, single scattering, and absorption at interactive rates,
even as the lighting, material properties, geometry, and viewing
parameters are changing. This is a significant improvement over
previous techniques, which have not been capable of simultane-
ous interactive updates to lighting, materials, and geometry. Our
rendering pipeline leverages the GPU to convert surface meshes to
volumetric data, to trace photons through the scene, and to ren-
der images of the resulting radiance distribution. We leave the CPU
free for applications such as interactive surface deformation and the
simulation of physical processes.

Although our approach is similar to volume photon mapping, we
rely on a regular voxel grid rather than a sparse kd-tree to store the
distribution of radiance within the volume. While one could argue
that a voxel grid does not scale well to large or complex scenes,
we claim that for many scenarios involving a single refractive ob-
ject or a confined participating medium, a voxel grid is adequate.
Furthermore, by using a voxel grid, we can take advantage of the
GPU’s rasterization pipeline to store photon radiance contributions
during the lighting pass, and we avoid the hefty cost of searching
for nearby photons during each step of the viewing pass.

Our technique also shares some similarities with eikonal rendering,
but achieves greater speeds, primarily by using adaptive step sizes.
We are free to change the step size because we propagate individual
photons rather than a coherent wavefront. In addition, we avoid
the difficulties encountered in eikonal rendering when wavefront
patches become inverted as they pass through caustic singularities.

Our rendering pipeline relies on both OpenGL and CUDA for
its implementation, and therefore we hope to see broader support
for applications that mix general-purpose computing and graphics-
specific operations on the GPU. In particular, our approach could
be further accelerated if OpenGL were able to render primitives
into more than one slice of a 3D texture, if CUDA were able to
read, modify, and write a texture entry in a single atomic operation,
or if 2D and 3D textures could be shared without copying.

The amount of video memory on current graphics hardware limits
our approach to volume resolutions of 128 × 128 × 128. As a
result, we cannot render very complex scenes, and surface caustics
and shadows become blurred. Temporal coherence can also be an
issue, since lighting changes may result in slightly different photon
storage patterns in a low-resolution volume. The incorporation of
volumetric approaches like our method and eikonal rendering into
traditional polygon-based renderers is an open research problem.

We envision several areas for future work. Accounting for mul-
tiple scattering during the adaptive photon tracing process would
allow us to render fog, smoke, and steam more realistically. We are
also interested in incorporating physical simulations into our sys-
tem, particularly for phenomena like fluids and mirages, where the

35:8 • X. Sun et al.

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

effects of refraction are significant. Because our rendering pipeline
already taxes the GPU, we face challenges of balancing the work
between the central processor and the graphics processor, and of
speeding the transfer of volumetric data between the two. Finally,
we would like to go beyond point and directional light sources to
see how environment maps and other complex light sources can be
incorporated into our rendering pipeline.

Acknowledgements

We would like to thank the reviewers for their valuable comments,
and Linjie Luo for help in turbulence generation. Xin Sun and
Jiaoying Shi were partially supported by the 973 Program of China
(No. 2002CB312105). This work was done while Xin Sun was an
intern at Microsoft Research Asia.

References

BORN, M., AND WOLF, E. 1999. Principles of Optics (7th edi-
tion). Cambridge University Press.

CHATTERJEE, S., BLELLOCH, G. E., AND ZAGHA, M. 1990.
Scan Primitives for Vector Computers. In Supercomputing 1990,
666–675.

CRANE, K., LLAMAS, I., AND TARIQ, S. 2007. Real-Time Simu-
lation and Rendering of 3D Fluids. In GPU Gems 3, H. Nguyen,
Ed. Addison-Wesley Professional, ch. 30, 633–675.

DAVIS, S. T., AND WYMAN, C. 2007. Interactive Refractions with
Total Internal Reflection. In Graphics Interface 2007, 185–190.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2002. Interac-
tive Rendering of Atmospheric Scattering Effects Using Graph-
ics Hardware. In Graphics Hardware 2002, 99–107.

EISEMANN, E., AND DÉCORET, X. 2006. Fast Scene Voxelization
and Applications. In Proceedings of I3D 2006, 71–78.

ERNST, M., AKENINE-MÖLLER, T., AND JENSEN, H. W. 2005.
Interactive Rendering of Caustics Using Interpolated Warped
Volumes. In Graphics Interface 2005, 87–96.

FANG, S., AND CHEN, H. 2000. Hardware Accelerated Voxeliza-
tion. Computers and Graphics 24, 3, 433–442.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Visual Sim-
ulation of Smoke. In Proceedings of ACM SIGGRAPH 2001,
15–22.

GUTIERREZ, D., SERON, F. J., ANSON, O., AND MUÑOZ, A.
2004. Chasing the Green Flash: A Global Illumination Solution
for Inhomogeneous Media. In Spring Conference on Computer
Graphics 2004, 97–105.

GUTIERREZ, D., MUNOZ, A., ANSON, O., AND SERON, F. J.
2005. Non-linear Volume Photon Mapping. In Rendering Tech-
niques 2005, 291–300.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A Sketching Interface for 3D Freeform Design. In Proceedings
of ACM SIGGRAPH 99, 409–416.

IHRKE, I., ZIEGLER, G., TEVS, A., THEOBALT, C., MAGNOR,
M., AND SEIDEL, H.-P. 2007. Eikonal Rendering: Efficient
Light Transport in Refractive Objects. ACM Trans. Graph. 26,
3, 59:1–59:9.

IWASAKI, K., DOBASHI, Y., AND NISHITA, T. 2002. An Effi-
cient Method for Rendering Underwater Optical Effects Using
Graphics Hardware. Computer Graphics Forum 21, 4, 701–711.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient Sim-
ulation of Light Transport in Scenes with Participating Media
Using Photon Maps. In Proceedings of ACM SIGGRAPH 98,
311–320.

JENSEN, H. W. 1996. Global Illumination Using Photon Maps. In
Rendering Techniques 96, 21–30.

KAJIYA, J. T., AND HERZEN, B. P. V. 1984. Ray tracing volume
densities. In Proceedings of ACM SIGGRAPH 84, 165–174.

KRÜGER, J., BÜRGER, K., AND WESTERMANN, R. 2006. In-
teractive Screen-Space Accurate Photon Tracing on GPUs. In
Rendering Techniques 2006, 319–329.

MOON, J. T., WALTER, B., AND MARSCHNER, S. R. 2007. Ren-
dering Discrete Random Media Using Precomputed Scattering
Solutions. In Rendering Techniques 2007, 231–242.

MULLEN, P., MCKENZIE, A., TONG, Y., AND DESBRUN, M.
2007. A Variational Approach to Eulerian Geometry Processing.
ACM Trans. Graph. 26, 3, 66:1–66:10.

NVIDIA CORPORATION. 2007. CUDA Programming Guide.
http://developer.nvidia.com/object/cuda.html.

OLIVEIRA, M. M., AND BRAUWERS, M. 2007. Real-Time Re-
fraction Through Deformable Objects. In Proceedings of I3D
2007, 89–96.

PAULY, M., KEISER, R., KOBBELT, L. P., AND GROSS, M. 2003.
Shape Modeling With Point-Sampled Geometry. ACM Trans.
Graph. 22, 3, 641–650.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon Mapping on Pro-
grammable Graphics Hardware. In Graphics Hardware 2003,
41–50.

STAM, J., AND LANGUÉNOU, E. 1996. Ray Tracing in Non-
Constant Media. In Rendering Techniques 96, 225–234.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S. G., AND NA-
YAR, S. K. 2005. A Practical Analytic Single Scattering Model
for Real Time Rendering. ACM Trans. Graph. 24, 3, 1040–1049.

SZIRMAY-KALOS, L., ASZÓDI, B., LAZÁNYI, I., AND PRE-
MECZ, M. 2005. Approximate Ray-Tracing on the GPU with
Distance Impostors. Computer Graphics Forum 24, 3, 695–704.

WEISKOPF, D., SCHAFHITZEL, T., AND ERTL, T. 2004. GPU-
Based Nonlinear Ray Tracing. Computer Graphics Forum 23, 3,
625–633.

WHITTED, T. 1980. An Improved Illumination Model for Shaded
Display. Communications of the ACM 23, 6, 343–349.

WYMAN, C., AND DAVIS, S. 2006. Interactive Image-space Tech-
niques for Approximating Caustics. In Proceedings of I3D 2006,
153–160.

WYMAN, C. 2005. An Approximate Image-space Approach for
Interactive Refraction. ACM Trans. Graph. 24, 3, 1050–1053.

ZHANG, L., CHEN, W., EBERT, D. S., AND PENG, Q. 2007.
Conservative Voxelization. Visual Computer 23, 9, 783–792.

ZIEGLER, G., DIMITROV, R., THEOBALT, C., AND SEIDEL, H.-
P. 2007. Real-Time Quadtree Analysis Using HistoPyramids. In
Real-Time Image Processing 2007, vol. 6496.

Interactive Relighting of Dynamic Refractive Objects • 35:9

ACM Transactions on Graphics, Vol. 27, No. 3, Article 35, Publication date: August 2008.

