
ACM Reference Format
Qin, H., Sun, X., Hou, Q., Guo, B., Zhou, K. 2015. Unbiased Photon Gathering for Light Transport Simula-
tion. ACM Trans. Graph. 34, 6, Article 208 (November 2015), 14 pages. DOI = 10.1145/2816795.2818119 
http://doi.acm.org/10.1145/2816795.2818119.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted 
without fee provided that copies are not made or distributed for profi t or commercial advantage and that 
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned 
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
SIGGRAPH Asia ‘15 Technical Paper, November 02 – 05, 2015, Kobe, Japan.
Copyright 2015 ACM 978-1-4503-3931-5/15/11 ... $15.00.
DOI: http://doi.acm.org/10.1145/2816795.2818119

Unbiased Photon Gathering for Light Transport Simulation

Hao Qin∗ Xin Sun† Qiming Hou∗‡ Baining Guo† Kun Zhou∗

∗State Key Lab of CAD&CG, Zhejiang University †Microsoft Research Asia

(a) SPPM, 1 hour (b) UPS/VCM, 1 hour (c) Our UPG+BDPT, 1 hour (d) Reference, BDPT, 2 days
Figure 1: A comparison between stochastic progressive photon mapping (SPPM), unified path sampling/vertex connection and merging
(UPS/VCM), and our unbiased photon gathering with bidirectional path tracing (UPG+BDPT) after 1 hour of rendering. SPPM utilizes
biased photon mapping to produce a low-variance result, at the cost of over-blurring sharp features. UPS/VCM gains extra benefits from
BDPT but the vertex merging part is still biased. Our method is both unbiased and robust, producing a result that most resembles the
reference. Note that the left inset is set to an exposure of 1/64 to make the HDR shadow details visible.

Abstract

Photon mapping (PM) has been widely regarded as an efficient so-
lution for light transport simulation, including challenging caustics
paths and many-bounce indirect lighting. The efficiency of PM
comes from reusing traced photons. However, the handling of pho-
ton gathering in existing PM algorithms is universally biased – the
expected value of their results does not necessarily agree with the
true solution of the rendering equation. We present a novel pho-
ton gathering method to efficiently achieve unbiased rendering with
photon mapping. Instead of aggregating the gathered photons into
an estimated density as in classical photon mapping, we process
each photon individually and connect the corresponding light sub-
path with the eye sub-path that generates the gather point, creating
an unbiased path sample. The Monte Carlo estimate for such a path
sample is calculated by evaluating all relevant terms in a strict and
unbiased way, leading to a self-contained unbiased sampling tech-
nique. We further develop a set of multiple importance sampling
(MIS) weights that allow our method to be optimally combined with
bidirectional path tracing (BDPT), resulting in an unbiased render-
ing algorithm that can efficiently handle a wide variety of light paths
and that compares favorably with previous algorithms. Experiments
demonstrate the efficacy and robustness of our method.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: global illumination, photon mapping, BDPT

1 Introduction

Extensive study has been devoted to the robust simulation of light
transport in virtual scenes. Photon mapping (PM) [Jensen 2001]
has been widely regarded as one of the most efficient solutions
when handling challenging caustics paths, or when significant il-
lumination comes from many-bounce indirect lighting. However,
its estimation of light transport is usually biased by photon gather-
ing, which means that the expected value of rendered results does
not necessarily agree with the true solution of the rendering equa-
tion [Kajiya 1986]. While progressive variants [Hachisuka et al.
2008; Hachisuka and Jensen 2009; Knaus and Zwicker 2011; Ka-
planyan and Dachsbacher 2013a] eventually converge to the correct
results, they remain biased at any finite number of samples.
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(a) BDPT (b) PM (c) UPS/VCM (d) a custom designed PM (e) UPG

Figure 2: Sub-path connection in five different algorithms. (a) A pair of sub-paths are explicitly connected with a shadow ray in BDPT
[Lafortune and Willems 1993; Veach and Guibas 1994]. (b) Photon density estimation [Jensen 2001] does not perform a visibility test. (c) A
gathered photon is formulated as an accepted Russian roulette connection in UPS/VCM [Hachisuka et al. 2012; Georgiev et al. 2012], but
there is no visibility test for the connection and the connection probability is approximated as if the surface points within the neighborhood
form a disc. (d) A custom designed density estimation [Bekaert et al. 2003] traces shadow rays for better accuracy, but the same disc
approximation brings bias to the kernel normalization term. (e) UPG is unbiased because it both employs the visibility test and handles the
connection probability without approximation.

Both the efficiency and the bias in photon mapping come from the
photon gathering step, during which eye sub-paths are traced from
the sensor, and a range search is performed at their endpoints to
query a photon map traced from the light sources in a previous pass.
The efficiency comes from the reuse of sub-paths corresponding
to the gathered photons. In classical PM methods, the gathered
photons are aggregated into an estimated density that approximates
local radiance or irradiance. Such an approximation produces bias,
typically in the form of blurred results. As shown in Fig. 1 (a) and
(b), the shadow in the zoom-in appears blurred.

In this paper, we propose a novel photon gathering method as a re-
placement of the density estimation to efficiently achieve unbiased
rendering with photon mapping. Specifically, instead of aggregat-
ing the gathered photons, we process each photon individually and
connect the corresponding light sub-path with the eye sub-path that
generates the gather point. This connection can be interpreted as a
Russian roulette event decided by the gather point. By removing the
gather point itself from the completed path, we obtain a path sam-
ple that could contribute to the final radiance estimation. While this
path reuse scheme has been formulated in previous work [Bekaert
et al. 2003], the roulette probability is approximated in the denom-
inator of the final estimate, resulting in a significant source of bias
in the rendering result. Therefore, we introduce an unbiased algo-
rithm to estimate the reciprocal of the roulette probability using a
series of Bernoulli trials, making it possible to calculate the Monte
Carlo estimate of the path sample by precisely evaluating all its
terms. The end result is a self-contained unbiased sampling tech-
nique, which can be incorporated into a wide variety of Monte Carlo
light transport algorithms. We additionally develop a set of multi-
ple importance sampling (MIS) weights that allow our method to
be optimally combined with traditional techniques.

The proposed unbiased photon gathering (UPG) can be combined
with traditional unbiased techniques for increased robustness. We
first combine it with bidirectional path tracing (BDPT) using MIS,
in a manner analogous to unified path sampling (UPS) [Hachisuka
et al. 2012] and vertex connection and merging (VCM) [Georgiev
et al. 2012], resulting in an unbiased rendering algorithm that can
efficiently handle a wide variety of light paths. The unbiased nature
of our method also makes it easy to serve as an additional sam-
pling technique in primary sampling space Metropolis light trans-
port (PSSMLT) [Kelemen et al. 2002].

For glossy and many-bounce light paths, experimental results
demonstrate that our method compares favorably to state-of-the-
art alternatives, including multiplexed Metropolis light transport
(MMLT) [Hachisuka et al. 2014] and UPS/VCM. While our UPG
has a higher per-photon overhead than UPS/VCM, the unbiased na-
ture of our method allows it to maintain a stable sampling speed,

i.e., the number of samples generated per unit time, throughout
the rendering, which is higher than the effective BDPT sampling
speed that UPS/VCM eventually converges to. While UPG loses
the ability to render strict specular-diffuse-specular (SDS) paths
as a cost of bias-free rendering, such effects can be approximated
using highly glossy surfaces, producing plausible results similar to
those generated by UPS/VCM (see Fig. 13).

2 Related Work

Photon Mapping (PM). The central idea of PM [Jensen 2001] is
to approximate local radiance using photon density estimated in
photon gathering.1 The locality of photon gathering makes it ef-
ficient to sample challenging caustics paths and many-bounce indi-
rect lighting. In addition, PM can reuse light sub-paths, which in-
creases the effective sampling rate with minimal cost. The density
estimation suppresses sampling noise, but meanwhile, introduces
biases. Consequently, PM is predominantly regarded as biased, al-
though state-of-the-art variants like Progressive Photon Mapping
(PPM) [Hachisuka et al. 2008] and Stochastic Progressive Pho-
ton Mapping (SPPM) are consistent [Hachisuka and Jensen 2009;
Knaus and Zwicker 2011; Kaplanyan and Dachsbacher 2013a]
and converge to the correct result when the sampling rate ap-
proaches infinity. MIS [Veach 1998] has been incorporated into
PM [Tokuyoshi 2009; Vorba 2011] approaches to combine multi-
ple techniques, although in a biased manner.

As an attempt to reduce bias, several researchers proposed to re-
move the gather point and connect its prefix vertex to the photon
with a shadow ray [Bekaert et al. 2003]. However, the bias reduc-
tion is partial at best since they approximated the essential proba-
bility term (corresponding to a normalization factor in their paper).
Although the way we generate light paths is technically equivalent
to Bekaert et al. [2003], we choose to interpret photon gathering as
a stochastic process like UPS/VCM, and provide an unbiased esti-
mator for the created path sample.

The recently proposed particle-guided BDPT [Vorba et al. 2014]
shoots photons and importons to compute a full-scene irradiance
distribution, which is then used to guide individual ray-surface in-
teractions in a separate unbiased pass. Their method operates on a
different principle than PM, as the photons are only used as guides
and do not make a direct contribution to the final image. Our

1The term “photon gathering” was first proposed as another alternative to
photon density estimation which directly connects photons to eye sub-paths
with shadow rays [Jensen 2001], though it is occasionally used to refer to
the search of nearby photons. In this paper, we take the second meaning to
linguistically distinguish the photon search from the traditionally-coupled
density estimation.
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method is orthogonal to their approach – their guides can be directly
applied to improve sub-path sampling in our method. Our prelimi-
nary implementation of a combined method has demonstrated con-
siderable benefits (see Fig. 12).

Bidrectional Path Tracing (BDPT). The rendering equation [Ka-
jiya 1986] is a physically-based formulation of general light trans-
port, which can be solved by sampling a path integral using Monte
Carlo methods. BDPT [Lafortune and Willems 1993; Veach and
Guibas 1994] samples paths by tracing light sub-paths and eye sub-
paths separately and connecting the endpoints with shadow rays,
which is especially efficient for indoor scenes with finite-sized light
sources and sensors. With MIS and the path space formulation of
BDPT [Veach 1998], a wide variety of path sampling techniques,
including ours, can be combined for increased robustness. The final
result is unbiased as long as all involved techniques are unbiased.

Unified Sampling. Both PM and BDPT sample paths by connect-
ing light sub-paths and eye sub-paths. Compared to BDPT connec-
tion, the locality between gather points and photons in photon gath-
ering improves sampling efficiency especially for caustics paths.
Accordingly, PM and BDPT methods generally specialize in mutu-
ally complementary light transport types [Hašan et al. 2009; Vorba
2011]. Therefore, an effective combination of both would be sig-
nificantly more robust than either approach. The key is to integrate
BDPT connection and photon gathering with a unified formulation
of path integrals.

VCM [Georgiev et al. 2012] redefines photon gathering as a prob-
abilistic bidirectional connection which rejects sub-path pairs with
spatially distant endpoints, whereas UPS [Hachisuka et al. 2012]
considers BDPT connections as a special case of PM where a pho-
ton overlaps the gather point exactly. The two formulations result
in an equivalent path-space combination of SPPM [Hachisuka and
Jensen 2009] and BDPT, where MIS could be utilized for increased
robustness. However, both formulations rely on photon density esti-
mation, and thereby inherit the estimation biases from photon gath-
ering. The final result would remain biased as in photon mapping.
In contrast, our unbiased photon gathering formulation excludes the
approximated evaluation in density estimation. It directly evaluates
the Monte Carlo estimate of the path samples in an unbiased way.
Our method can be combined with BDPT in a manner analogous to
UPS and VCM, but the final result is unbiased.

Markov Chain Monte Carlo (MCMC). MCMC was intro-
duced to the graphics community as Metropolis light transport
(MLT) [Veach and Guibas 1997], which uses the Metropolis-
Hastings algorithm [Metropolis et al. 1953] to improve bidirec-
tional path sampling. Since then, a wide variety of mathemati-
cal and practical improvements [Kelemen et al. 2002; Cline et al.
2005; Kitaoka et al. 2009; Hachisuka and Jensen 2011; Jakob and
Marschner 2012; Kaplanyan and Dachsbacher 2013b; Kaplanyan
et al. 2014; Hachisuka et al. 2014] have been proposed in the
MCMC framework. However, analogous to other approaches based
on path sampling, MCMC algorithms would still become biased
when combined with biased methodology [Hachisuka and Jensen
2011; Kaplanyan and Dachsbacher 2013b].

Many-light Methods. Many-light rendering [Keller 1997; Kollig
and Keller 2004; Walter et al. 2005; Walter et al. 2006; Hašan et al.
2009; Davidovič et al. 2010; Walter et al. 2012] is another effec-
tive alternative to Monte Carlo approaches which is known for its
high scalability and low noise level. Drawing parallels between vir-
tual lights and light sub-paths, many-light methods resemble BDPT
more than PM as the virtual lights are connected to eye sub-paths
with shadow rays rather than local gathering [Segovia et al. 2006;
Walter et al. 2012]. Consequently the end-to-end behavior resem-
bles that of BDPT, to which PM remains complementary. This is

especially true when handling specific light transport types such
as caustics. While this paper focuses on photon mapping, VPL
schemes with probabilistic shadow ray tests can potentially employ
an unbiased reciprocal estimation scheme analogous to ours.

3 Unbiased Photon Gathering

Light transport simulation is generally formulated as path integra-
tion [Veach 1998], and classical BDPT [Lafortune and Willems
1993; Veach and Guibas 1994] is its unbiased estimation by con-
necting light sub-path / eye sub-path pairs with a shadow ray, as
shown in Fig. 2 (a). Photon mapping [Jensen 2001] takes a different
approach. Instead of connecting a single light sub-path, the incident
radiance at the end point of an eye sub-path is approximated by pho-
ton density estimated from nearby photons. As in Fig. 2 (b), it does
not perform any visibility test and the bidirectional scattering dis-
tribution function (BSDF) term is evaluated for a wrong direction,
which creates bias. The equivalent formulations in UPS [Hachisuka
et al. 2012] and VCM [Georgiev et al. 2012] unify BDPT connec-
tion and photon gathering within the same path integral, however, in
a biased way. As illustrated in Fig. 2 (c), they formulate the photon
gathering as a hypothetical Russian roulette process without veri-
fying the visibility of accepted connections. In addition, they also
approximate the connection probability assuming the surface point
within the neighborhood is a perfect disc. Before UPS/VCM, ad-
ditional visibility tests have been proposed to improve the accuracy
of density estimation [Bekaert et al. 2003] (see Fig. 2 (d)), where
the UPS/VCM connection probability corresponds to a normaliza-
tion term. However, they make the same disc approximation, which
biases the final estimation. UPG follows the Russian roulette for-
mulation of UPS/VCM, but handles the probability term without
any approximation as illustrated in Fig. 2 (e).

In this section, we start with the basic formulations of the path in-
tegral and BDPT, and then review the formulation of vertex merg-
ing [Georgiev et al. 2012] which interprets photon gathering as a
technique for path sampling (Sec. 3.1). Based on the formulation
of vertex merging, we analyze the causes of the biases from photon
gathering (Sec. 3.2). After that, we introduce our formulation of
explicit Russian roulette connection to remove the bias in photon
gathering (Sec. 3.3). Finally, we describe an unbiased algorithm to
estimate the reciprocal of the sampling probability in photon gath-
ering using a series of Bernoulli trials (Sec. 3.4), and a rendering al-
gorithm using our unbiased photon gathering under the framework
of photon mapping (Sec. 3.5).

3.1 Review of Path Integral and Vertex Merging

Path Integral and BDPT. We use the Monte Carlo path integral
formulation of light transport:

I =

∫
Ω

f(x̄)dµ(x̄) ≈ 1

n

n∑
i=1

f(x̄i)

p(x̄i)
, (1)

where x̄ denotes a path between a light source and a sensor, n
is the number of samples, f(x̄) is the energy it carries and p(x̄)
is the probability density function used to sample x̄. Classi-
cal BDPT connects a light sub-path y1 · · · ys to an eye sub-path
zt · · · z1 by tracing the shadow ray yszt. The resulting full path
x̄s,t = y1 · · · yszt · · · z1 has a length of k = s + t − 1. We can
define the corresponding Monte Carlo estimator in Eq. (1) as:

C∗(x̄s,t) =
f(x̄s,t)

p(x̄s,t)
= αL(x̄s,t)f

c(x̄s,t)α
E(x̄s,t), (2)

where αL(x̄s,t) and αE(x̄s,t) are the light and eye sub-path terms
respectively. For now we will ignore their definitions and focus on
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fc(x̄s,t), which is the measure term of the sub-path connection

fc(x̄s,t) = fs(ys−1 → ys → zt)

·G(ys ↔ zt)fs(zt−1 → zt → ys), (3)

where fs is the bidirectional scattering distribution function
(BSDF) and G is the geometry term that converts the area measure
at zt to the projected solid angle measure [Veach 1998] centered at
ys, which also takes the mutual visibility into account.

Photon Gathering as Vertex Merging. In photon mapping, the
incident radiance at the end point of an eye sub-path is evaluated
through photon density estimation, which is computed by gather-
ing photons within a local neighborhood. The neighborhood size is
typically specified as a radius d. According to the equivalent for-
mulations of UPS/VCM, photon gathering can be considered as a
process that pairs each eye sub-path zt′ · · · z1 with all light sub-
paths y1 · · · ys′ satisfying ‖ys′ − zt′‖ < d. Here we follow the
vertex merging formulation in VCM as it explains our method more
elegantly.

Vertex merging requires one of the sub-path endpoints to be re-
moved from the final path. Without loss of generality, we remove
zt′ , and the resulting complete path is y1 · · · ys′zt′−1 · · · z1, which
we denote as x̄s′,t′−1. The estimator corresponding to Eq. (2) is

C∗VM (x̄s′,t′−1) = αL(x̄s′,t′−1)αcVM (x̄s′,t′−1)αE(x̄s′,t′−1),

αcVM (x̄s′,t′−1) =
fcVM (x̄s′,t′−1)

pcVM (x̄s′,t′−1)
, (4)

where the connection term fc(x̄s,t) in Eq. (2) becomes
αcVM (x̄s′,t′−1), which includes both the measurement contribution
fcVM (x̄s′,t′−1) and the connection probability pcVM (x̄s′,t′−1).

3.2 Bias of Photon Gathering

Vertex merging in Eq. (4) explicitly formulates photon gathering as
a hypothetical Russian roulette process. The probability pcVM is
the corresponding acceptance probability, where zt′ is interpreted
as the end point of a random tentative ray. The connection be-
tween y1 · · · ys′ and zt′−1 · · · z1 is only accepted if zt′ falls within
the neighborhood of ys′ , which corresponds to the neighborhood
search in photon gathering. While this interpretation seemingly
goes against engineering intuition, it renders photon gathering as
a bidirectional path sampling technique. This allows us to explic-
itly formulate the bias in classical photon mapping, which is the
first step towards unbiased photon gathering.

Comparing Eq. (4) with the unbiased BDPT formulation in Eq. (2),
we can see that if αcVM (x̄s′,t′−1) in Eq. (4) could have been an
unbiased Monte Carlo estimator of fc(x̄s,t) in Eq. (2), the estima-
tion C∗VM (x̄s′,t′−1) would be unbiased just like C∗(x̄s,t). This
requires fcVM to be equal to fc and pcVM to be the real probability
for the zt′ to accept the Russian roulette connection. However, in
vertex merging, C∗VM is simply evaluated using an equivalent form
of the density estimation in classical photon mapping, and neither
of the two requirements holds true.

Specifically, in vertex merging, fcVM in Eq. (4) is not directly re-
lated to the connection between ys′ and zt′−1

fcVM (x̄s′,t′−1) = fs(ys′−1 → ys′(zt′)→ zt′−1)

·G(zt′ ↔ zt′−1)fs(zt′−2 → zt′−1 → zt′), (5)

where fs(ys′−1 → ys′(zt′) → zt′−1) indicates that the BSDF is
still evaluated at ys′ but the outgoing direction is taken as zt′ →
zt′−1 instead of ys′ → zt′−1.

In contrast, according to Eq. (3) the strict evaluation should be

fc(x̄s′,t′−1) = fs(ys′−1 → ys′ → zt′−1)

·G(ys′ ↔ zt′−1)fs(zt′−2 → zt′−1 → ys′). (6)

Comparing Eq. (5) with Eq. (6), one can see that both the geometry
term and the BSDF term at ys′ are approximated, because the edge
ys′ ↔ zt′−1 is replaced by zt′ ↔ zt′−1, which is an approximation
that originated from classical photon mapping.

The key idea introduced by UPS/VCM is that the photon gathering
neighborhood determines the probability of making such a connec-
tion. In VCM, pcVM in Eq. (4) also takes an equivalent form of
photon density estimation using a constant disc filtering kernel

pcVM (x̄s′,t′−1) = πd2p̃x(zt′−2 → zt′−1 → ys′), (7)

where p̃x(zt′−2 → zt′−1 → ys′) is the probability density to sam-
ple vertex ys′ from two preceding vertices zt′−2 and zt′−1. The
tilde indicates that for the purpose of computing p̃x, ys′ is always
assumed to be visible from zt′−1 even if in fact it is not.

In contrast, the strict evaluation has to properly integrate px over
every possible zt′ in the gathering radius, which is the same as the
acceptance probability without approximation in VCM and gives

pc(x̄s′,t′−1) =

∫
S(ys′ ,d)

px(zt′−2 → zt′−1 → z)dz. (8)

The integration domain S(ys′ , d) is the gathering neighborhood,
which consists of all surface points within a sphere of radius d cen-
tered at ys′ . Unlike p̃x, the integrand px has the correct visibility
term embedded and px(zt′−2 → zt′−1 → z) = 0 if z is not visible
from zt′−1.

Comparing Eq. (7) with Eq. (8), pcVM (x̄s′,t′−1) approximates the
integration using one sample at p̃x(zt′−2 → zt′−1 → ys′) without
verifying the visibility, and the area of the neighborhood S(ys′ , d)
is also approximated as the simple disk area πd2.

Biases in existing methods. According to the term-wise compar-
ison between the BDPT estimator in Eq. (2) and PM estimator in
Eq. (4), we can see that the most essential change photon mapping
introduced is the connection probability pcVM . Existing methods
typically use a disc approximation for this term, whether it is in-
terpreted as a Russian roulette probability [Hachisuka et al. 2012;
Georgiev et al. 2012] (Fig. 2 (c)) or as a normalization factor in
a customized density estimation [Bekaert et al. 2003] (Fig. 2 (d)).
The disc approximation is an essential source of estimation biases,
and our method is the first to remove it. Details will be introduced
in Sec. 3.3 and Sec. 3.4.

Note that the path reuse formulation of photon gathering as well
as the connection probability have been described in [Bekaert et al.
2003], and are thus not the contributions of this paper. Our main
contribution is an unbiased algorithm to estimate the reciprocal of
the connection probability using a series of Bernoulli trials (Sec. 3.3
and Sec. 3.4), making it possible to calculate the Monte Carlo esti-
mate of the path sample for the first time.

3.3 Explicit Russian Roulette Connection

Having analyzed the bias of classical photon mapping, a natural
direction is to replace Eq. (5) and Eq. (7) with the corresponding
strict evaluations in Eq. (6) and Eq. (8) respectively, which forms
an unbiased estimation

C∗RR(x̄s′,t′−1) = αL(x̄s′,t′−1)αc(x̄s′,t′−1)αE(x̄s′,t′−1),

αc(x̄s′,t′−1) =
fc(x̄s′,t′−1)

pc(x̄s′,t′−1)
. (9)
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Eq. (9) is a strict formulation of the hypothetical Russian roulette
event in photon gathering. zt′ is interpreted as a rejection sample
independent of x̄s′,t′−1, which conditionally rejects the connection
between the two sub-paths y1 · · · ys′ and zt′−1 · · · z1. The connec-
tion is only accepted if zt′ falls within the neighborhood S(ys′ , d),
the probability of which is pc.

The explicit Russian roulette connection in Eq. (9) differs from ver-
tex merging in Eq. (4) by utilizing the strict evaluations of fc and
pc. To truly eliminate bias, all terms in the strict formulas Eq. (6)
and Eq. (8) must be evaluated in an unbiased manner. As Eq. (6)
can be evaluated precisely by tracing the shadow ray between ys′
and zt′−1, as proposed by Bekaert et al. [2003], the main challenge
comes to Eq. (8), which is the connection probability pc.

Note that px(zt′−2 → zt′−1 → z) in Eq. (8) depends on the geom-
etry termG(zt′−1 ↔ z), which additionally depends on a visibility
term, making an analytical integration practically impossible. Thus
we introduce a separate Monte Carlo estimate to handle pc. How-
ever, since pc is ultimately used as a denominator in Eq. (9), even
an unbiased Monte Carlo estimate of Eq. (8) would still bias the
final result. Jensen’s inequality [Chandler 1987] leads to:

1

E [pc]
≥ E

[
1

pc

]
. (10)

The equality only holds true when the variance is zero, which
clearly does not hold for general sub-path pairs. Therefore, we must
develop an unbiased method that directly estimates the probability
reciprocal r(x̄) = 1/pc(x̄).

3.4 Unbiased Probability Reciprocal Estimation

Our probability reciprocal estimation is inspired by Booth’s
work [2007], which introduces an unbiased solution to the more
general problem of estimating the reciprocal of an arbitrary integral.
Under Booth’s formulation, our method is a special case where the
unknown portion of the integrand is a binary function (see details
in Appendix C).

As illustrated in Fig. 3(a), suppose we literally follow through with
the hypothetical Russian roulette test described in Sec. 3.1. For
each path x̄s′,t′−1, we generate the tentative ray zt′−1 → z fol-
lowing the distribution px(zt′−2 → zt′−1 → z). Based on the
definition in Eq. (8), there is a pc(x̄s′,t′−1) probability for each ray
to be accepted by Russian roulette. Repeatedly generating tentative
rays for the same path x̄s′,t′−1 gives a series of Bernoulli trials.
Assuming that the first accepted ray comes after N(x̄s′,t′−1) tries,
one could see that the random variable N(x̄s′,t′−1) follows a geo-
metric distribution

Pr (N(x̄s′,t′−1) = i) = pc(x̄s′,t′−1)(1− pc(x̄s′,t′−1))i−1, (11)

and the expectation of N is exactly what we need:

E [N(x̄s′,t′−1)] =

+∞∑
i=1

ipc(x̄s′,t′−1) (1− pc(x̄s′,t′−1))i−1

=
1

pc(x̄s′,t′−1)
= r(x̄s′,t′−1). (12)

In summary, an unbiased estimation of the probability reciprocal
can be computed as the number of tentative rays tested until the
first successful Bernoulli trial, i.e., up to and including the first ray
that hits the gathering sphere S(ys′ , d).

(a) Bernoulli trials (b) With angular bound

Figure 3: Unbiased estimation of the probability reciprocal. (a)
illustrates the raw formulation of tracing tentative rays and using
the gathering sphere as a Russian roulette test. N , the number
of trials required to produce a first hit, is an unbiased estimation of
the probability reciprocal. (b) illustrates the efficiency improvement
brought by the angular bound.

Angular Bound for Tentative Rays. An obvious issue of the
aforementioned algorithm is the potentially unbounded number of
Bernoulli trials N . However, note that the Bernoulli trials are only
triggered with a probability of pc, and N is an estimation of its re-
ciprocal. When amortized over all connections, the expected num-
ber of Bernoulli trials per connection is simply:

E [N(x̄s′,t′−1)pc(x̄s′,t′−1)] = r(x̄s′,t′−1)pc(x̄s′,t′−1) = 1. (13)

Thus, on average the total number of required Bernoulli trials is
equal to the total number of connections. However, since the Rus-
sian roulette formulation in Sec. 3.1 assumes all sub-path pairs are
tested for connection, the bound is O(n2) for n sub-paths, which is
still prohibitively expensive. To make the Bernoulli trial overhead
practical, we must avoid testing potential connections that would be
an obvious rejection.

As a solution, we exploit the restricted size of the gathering neigh-
borhood S(ys′ , d). Specifically, we project the neighborhood onto
the unit sphere centered around zt′−1, and only trace tentative rays
within the resulting angular bound as illustrated in Fig. 3(b). Con-
sequently, the expected number of Bernoulli trials per connection
is reduced by a factor proportional to the squared distance between
ys′ and zt′−1, providing d � ‖ys′ − zt′−1‖. Ignoring the effects
of BSDF importance sampling, we have:

E
[
Nb(x̄s′,t′−1)

]
E [N(x̄s′,t′−1)]

≈ πd2

‖ys′ − zt′−1‖2
, (14)

whereNb(x̄s′,t′−1) is the number of Bernoulli trials after applying
the angular bounding. The bound may degenerate to the entire up-
per hemisphere for extremely close pairs of zt′−1 and ts′ . However,
such cases only constitute a tiny portion of the Russian roulette con-
nections. Based on our experiments, this bounding reduces the total
overhead of our algorithm to approximately O(n).

With Nb Bernoulli trials instead of N , the probability reciprocal
estimation in Eq. (12) has to be adjusted accordingly:

r(x̄s′,t′−1) =
E
[
Nb(x̄s′,t′−1)

]
pb(x̄s′,t′−1)

, (15)

pb(x̄s′,t′−1) =

∫
Ωb

px(zt′−2 → zt′−1 → z)dz, (16)
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where Ωb is the set of surface points visible to zt′−1 and inside
the angular bound. pb(x̄s′,t′−1) is the probability for a tentative
ray traced without the angular bound to fall within Ωb. As de-
fined in Eq. (13) and Eq. (15), pb(x̄s′,t′−1) is also the ratio by
which the angular bound reduces the number of Bernoulli trials:
pb(x̄s′,t′−1) = E

[
Nb(x̄s′,t′−1)

]
/E [N(x̄s′,t′−1)].

Ωb can be chosen arbitrarily as long as it includes all points
in S(ys′ , d) that are visible to zt′−1. Note that pb(x̄s′,t′−1) in
Eq. (16) is not a random variable and must be evaluated analytically.
This type of integration has been well researched in the context of
BSDF importance sampling. We simply bound the random number
used to generate the tentative ray direction. Details can be found in
the supplementary material, which includes an example mathemat-
ical derivation for a combined Lambertian and Phong BSDF. The
angular bound also significantly reduces the estimation variance of
the probability reciprocal r, as discussed in Appendix A.

To prove that the angular bound does not introduce additional bias,
we substitute Eq. (15) into Eq. (9) and verify that the expectation of
the resulting estimator is still correct

E

[
αL(x̄s′,t′−1)

fc(x̄s′,t′−1)Nb(x̄s′,t′−1)

pb(x̄s′,t′−1)
αE(x̄s′,t′−1)

]
= E [C∗RR(x̄s′,t′−1)]E

[
pc(x̄s′,t′−1)Nb(x̄s′,t′−1)

pb(x̄s′,t′−1)

]
= E [C∗RR(x̄s′,t′−1)]

E
[
Nb(x̄s′,t′−1)

]
r(x̄s′,t′−1)pb(x̄s′,t′−1)

= E [C∗RR(x̄s′,t′−1)] , (17)

Notice that pc(x̄s′,t′−1) and pb(x̄s′,t′−1) can be taken out of E [·]
as their values are constant for any given path x̄s′,t′−1.

We note that our method can be regarded as the first application
of Booth’s method in global illumination. However, a straightfor-
ward application of Booth’s formulation is prohibitively expensive.
We simplify it as a series of Bernoulli trials and optimize it with
angular bounding to make it practical, which can be thought of as
the auxiliary function in Booth’s framework. This is analogous to
the fact that while most unbiased rendering algorithms are applica-
tions of the Monte Carlo estimate method, it is the actual sampling
technique that is significant in the graphics context.

3.5 Rendering Algorithm

Algorithm 1 summarizes the rendering algorithm using our unbi-
ased photon gathering (UPG) under the framework of photon map-
ping. Note that the algorithm generates a photon map and performs
gathering just like in classical photon mapping. The key difference
is in lines 5-16, which generate an unbiased path sample for each
photon instead of performing a density estimation.

Compared to PPM-based methods, our algorithm shares the same
limitation where the photon gathering in line 4 can only use a fixed-
radius search rather than the classical k-nearest neighbor (kNN)
search [Jensen 2001]. We require an explicit radius to form a well-
defined integration domain in Eq. (8). However, unlike PPM, our
method is unbiased, which makes progressive rendering a trivial
matter of running Algorithm 1 many times and averaging the results
(see the error of UPG+BDPT reducing to zero in Fig. 7). Thus, our
neighborhood gathering radius d can be tuned arbitrarily and inde-
pendently in each rendering session, as d does not affect conver-
gence and only impacts computational efficiency.

Compared to the photon gathering in UPS/VCM, our method uses
an equivalent interpretation to formulate photon mapping in the

Algorithm 1 Pseudo code of unbiased photon gathering
1: Generate a fixed number of light sub-paths {ȳ}
2: Build a photon map using the endpoints {ys′}
3: for each eye sub-path z̄ = zt′ · · · z1 do
4: Gather photons in the radius-d neighborhood S(zt′ , d)
5: for the light sub-path ȳ of each gathered photon do
6: Project S(ys′ , d) to an angular bound Ωb around zt′−1

7: Nb ← 0
8: do
9: Nb ← Nb + 1

10: Sample a tentative ray zt′−1 → z from Ωb
11: while z /∈ S(ys′ , d)
12: Create a complete path x̄ = y1 · · · ys′zt′−1 · · · z1

13: Compute pb(x̄) using Eq. (16)

14: C∗RR(x̄) = αL(x̄)
(
fc(x̄) Nb

pb(x̄)

)
αE(x̄) as in Eq. (17)

15: Accumulate C∗RR(x̄) to the pixel corresponding to x̄
16: end for
17: end for

(e)

(a) (b)

(c) (d)

Figure 4: The effect of clamping the approximated pc to 1. (a) is
rendered without clamping. (b) is rendered with clamping. (c) and
(d) visualize the per-pixel relative contribution of UPG in (a) and
(b) respectively. (e) is the complete image rendered with clamping
enabled, and the rendering takes 10 minutes.

BDPT path space. However, those approaches focus on combin-
ing PM with BDPT in general, and bias is not a major concern.
Hence, they utilize approximations for their equivalent terms of
pc(x̄). While such approximations are biased, they are simpler and
more efficient than our unbiased estimation. This is not surprising
as removing bias would unavoidably incur some additional cost.

Compared to BDPT, our method has to process a non-trivial number
of light and eye sub-paths in batch to be effective. While technically
Algorithm 1 remains correct for a single pair of sub-paths, doing so
hardly has any practical value due to the additional Bernoulli trials
required. Our scheme retains the inherent behaviors of PM-based
approaches, and the most critical factor in efficiency is the reuse of
sub-paths [Hachisuka et al. 2012; Georgiev et al. 2012]. Significant
benefits are only possible when each eye sub-path can be connected
to multiple light sub-paths and vice versa.

Finally, two implementation details should be noted. First, when
our method is used in conjunction with BDPT using formulations
like UPS/VCM, it is possible to reuse the same set of light and eye
sub-paths in both algorithms. As previously discussed, when con-
necting the same pair of sub-paths y1 · · · ys and zt · · · z1, BDPT
generates a path y1 · · · yszt · · · z1 which has s + t − 1 edges,
whereas our method generates a path y1 · · · yszt−1 · · · z1 which has
s+t−2 edges with zt excluded. The complete paths do not overlap
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(a) BDPT (b) UPG (c) UPG+BDPT

Figure 5: The effect of UPG in BDPT. (a) is rendered using clas-
sical BDPT. (b) is rendered using pure UPG. (c) is rendered by
combining both methods. The images are rendered with the same
computation time (1 hour).

in the path space, and they can be treated as independent in practice.

Second, in the previous sections we have only discussed about the
path x̄s′,t′−1 generated by removing zt′ . In practice one could
also consider the alternative that removes ys′ instead and gener-
ates x̄s′−1,t′ . While it is possible to evaluate both paths, in practice
we found that doing so is not cost-effective. The more efficient
approach is to evaluate one of the two candidates and discard the
other, where we make the decision heuristically by removing the
vertex generated from the less glossy reflection. A more detailed
explanation is provided in Appendix B.

Our UPG can also be taken as an individual unbiased sampling
technique and combined with other sampling techniques under the
unified framework of MIS. This is analogous to UPS/VCM, where a
biased SPPM is combined instead. We follow the VCM framework
for combination, since we choose to exclude zt′ from the complete
path rather than including both endpoints in an extended path space.
In Sec. 4 and Sec. 5, UPG is combined with BDPT and PSSMLT re-
spectively. The combination of UPG with another unbiased method
is, of course, still unbiased.

4 MIS Combination with BDPT

Now we describe how to combine our UPG with BDPT using MIS.
With multiple sampling techniques, MIS formulates the Monte
Carlo path integral in Eq. (1) as

I ≈
m∑
i=1

1

ni

ni∑
j=1

wi(x̄i,j)
f(x̄i,j)

pi(x̄i,j)
, (18)

where m is the number of sampling techniques, ni is the sample
count taken for technique i. pi(x̄) and wi(x̄) are the corresponding
path probability density values and MIS weights. For the combi-
nation to be unbiased, the weights wi(x̄) must be consistent when
the same x̄ is generated from different techniques. In addition, wi
must meet the normalization and non-negativity requirements:

m∑
i=1

wi(x̄) = 1, wi(x̄) ≥ 0. (19)

We use the widely-accepted power heuristic

wi(x̄) =
(nipi(x̄))β∑m
j=1 (njpj(x̄))β

, (20)

(a) PSSMLT (b) UPG (c) UPG+PSSMLT

Figure 6: The effect of UPG in PSSMLT. (a) is rendered with
PSSMLT. (b) is rendered with pure UPG and (c) is rendered with
UPG+PSSMLT. The images are rendered within the same computa-
tion time (30 min). We can see that UPG helps PSSMLT to improve
sampling quality for many-bounce light paths and glossy materials,
and combining with PSSMLT down-weights low probability UPG
paths, which eliminates the bright spike artifacts.

where β > 0 is a predefined parameter. We take β = 2 as rec-
ommended by Veach [1998]. Since Eq. (20) satisfies Eq. (19) by
definition, the main implementation challenge lies in computing
the relevant probability density terms pj for paths sampled using
a different technique i.

Given a path x̄ with k edges, there are k + 1 BDPT sampling
techniques and k − 1 UPG techniques, corresponding to different
choices of the pre-connection sub-path lengths. The number differ-
ence comes from the fact that BDPT allows zero-length sub-paths.
Regardless of the technique chosen to generate x̄, it is straightfor-
ward to compute the probability density of BDPT techniques di-
rectly from the complete path:

pBDPT
s,t (x̄) = pL(x̄s,t)p

E(x̄s,t), (21)

where pL and pE are the classical sub-path probability density
terms [Veach 1998] included in Eq. (2)

αL(x̄s,t) =
fL(x̄s,t)

pL(x̄s,t)
, αE(x̄s,t) =

fE(x̄s,t)

pE(x̄s,t)
, (22)

where fL(x̄s,t) and fE(x̄s,t) are the measurement contribution
terms corresponding to the light and eye sub-paths respectively.

On the other hand, the probability density of unbiased photon gath-
ering is defined as

pUPG
s′,t′ (x̄) = pL(x̄s′,t′−1)pc(x̄s′,t′−1)pE(x̄s′,t′−1), (23)

in which the connection probability pc cannot be evaluated ana-
lytically. While an unbiased estimation is technically possible, it
would not serve the purpose here, since deterministic approxima-
tion of MIS weights would not introduce bias as long as Eq. (19) is
still satisfied. Hence we revert to the approximation of Eq. (7) used
by UPS/VCM when computing pc for MIS weights.

However, Eq. (7) may disagree with our real connection probability
in Eq. (8). Therefore, a sufficiently large error can lead to subop-
timal combination, which is most pronounced when ys′ and zt′−1

are spatially close. We thus propose a heuristic clamping to allevi-
ate this problem

pc(x̄s′,t′−1) ≈ min(πd2px(zt′−2 → zt′−1 → ys′), 1). (24)

The intuition behind Eq. (24) is simple. Note that pc is a unit-less
probability of a hypothetical Russian roulette event and its correct
value should never exceed 1. However, px is a probability den-
sity per unit area and by definition px(zt′−2 → zt′−1 → ys′)
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Figure 7: Bias experiment comparing UPG+BDPT and the biased UPS/VCM. Each algorithm renders 64 images independently, then we
average an increasing number of them and compare the results with the ground truth. The left side shows difference images and the right side
is a log-log plot of RMSE against the number of averaged images. As illustrated, UPG+BDPT can converge this way but UPS/VCM cannot.
The rendering results are provided in the supplementary material.
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Figure 8: Relative contribution of BDPT and PM in UPS/VCM and our UPG+BDPT. (c)-(f) visualize the relative contribution for different
rendering times. We can see that the PM sampling technique consistently contributes to the image in our UPG+BDPT, while UPS/VCM’s
progressive shrinking radius causes the contribution to diminish. The plot on the right shows the sampling speed of the two methods as
a function of time. UPS/VCM is initially more efficient, but its sampling speed diminishes over time as the more effective PM technique
gradually falls out of use. On the other hand, UPG+BDPT starts slow, but its stable speed eventually takes the lead with enough computation
time. Therefore, UPS/VCM provides lower estimation variance in the first several minutes but UPG+BDPT overtakes it after 1 hour of
rendering, as shown in (a) and (b).

is inversely proportional to ‖zt′−1 − ys′‖2. By assuming px to
be constant within a radius of d, Eq. (7) implicitly assumes that
d � ‖zt′−1 − ys′‖. When the assumption fails, the resulting
approximation could produce a value significantly larger than 1.
Clamping the value back to 1 restricts this error, as shown in Fig. 4.
The clamped result (b) computed using Eq. (24) is noticeably less
noisy than the naive MIS result in (a) computed using Eq. (7).

Note that such probability clamping is not required in UPS/VCM.
Their approaches use photon density estimation to approximate the
path integral and produce a smooth result regardless of how small
‖zt′−1− ys′‖ is. The “probability” greater than 1 implicitly makes
the smoother PM result dominate the MIS combination, which is
usually desirable in a biased method.

Fig. 5 illustrates the effect of combining BDPT and UPG. Note that
UPG (b) converges significantly better for many-bounce indirect
paths, while BDPT (a) is more efficient for diffuse direct lighting.
Like in UPS/VCM, the MIS combination (c) gets the best of both
methods and is robust for both caustics and direct lighting.

5 MCMC Integration

MCMC methods sample light transport by sampling a Markov
Chain, the state of which typically represents one or more paths.
The Metropolis-Hastings algorithm is applied to ensure that the
sampling probability density of each state is proportional to a
Monte Carlo estimator computed from the corresponding paths. A
path sampling technique can either be added as a new type of state

mutation or as an extra term in the per-state estimator. We take the
later approach and build upon PSSMLT [Kelemen et al. 2002].

The classical PSSMLT state is a conceptually infinite sequence of
random numbers, which is used to sample an eye sub-path with s
vertices and a light sub-path with t vertices. s × t complete paths
are generated by connecting sub-path prefixes as in classical BDPT.
The MIS combination of the respective path integral estimators is
taken as the MCMC sampling probability density. To add unbiased
photon gathering, we first pre-trace a fixed set of light sub-paths as
in lines 1-2 of Algorithm 1. When evaluating each PSSMLT state,
we take the original eye sub-path, and execute the gathering process
in lines 4-16 on all its t − 1 prefixes. The resulting estimators are
inserted to the per-state MIS combination, which is then used in
the original PSSMLT mutations. The pre-traced light sub-paths are
regenerated periodically to minimize correlation artifacts.

The simplicity of combining UPG with MCMC methods stems
from its unbiased nature. Adding UPG to the set of sampling tech-
niques of PSSMLT will not affect the target distribution of the
Markov Chain process. The combination would be no more than
combining UPG with BDPT. While the combination of PPM with
MCMC methods needs to either design another target distribution
[Hachisuka and Jensen 2011] or carefully deal with the gather ra-
dius shrinkage rate [Kaplanyan and Dachsbacher 2013b].

Fig. 6 illustrates how UPG improves the PSSMLT result. Classical
PSSMLT (a) does not converge very well for the many-bounce indi-
rect lighting, which is a behavior inherited from BDPT. Combining
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Figure 9: A histogram of the number of per-path Bernoulli trials
for Fig. 1. On average 2.81 trials are performed for each gathering.
The last bin represents 100 or more trials.

PSSMLT with UPG (b) results in a noticeable improvement. How-
ever, currently the UPG+PSSMLT (c) combination does not per-
form as well as UPG+BDPT, as the fixed per-state estimator does
not allow flexible adjustment of relative sampling rates. Therefore,
unless otherwise stated, we default to UPG+BDPT in comparisons.

6 Experimental Results

We conduct a series of experiments to validate our method as well
as to compare with alternative light transport algorithms on a com-
puter with four Intel i7 3.40GHz CPU cores and 16GB memory.
All methods are implemented in the Mitsuba renderer [Jakob 2010].
We choose to compare with multiplexed Metropolis light transport
(MMLT) [Hachisuka et al. 2014] as an unbiased alternative and
UPS/VCM as a biased alternative.

Bias Experiment. We experimentally validate the unbiased nature
of our method by averaging images generated from independent
runs. As illustrated in the top-left row of Fig. 7, the estimation
error of UPG+BDPT approaches zero as the number of images in-
creases. In contrast, the consistent-yet-biased UPS/VCM does not
converge to the ground truth in such a setup. The RMSE (root mean
squared error) curve of UPG+BDPT shows up as a line of slope
−0.5 in a log-log plot (Fig. 7 right), which follows the classical
square root convergence of unbiased Monte Carlo estimate. In con-
trast, UPS/VCM cannot reduce the error beyond a certain threshold,
which is a classical behavior of a biased algorithm. Here we should
note that this experiment setup uses independent runs to expose
bias behavior, in which UPS/VCM has to restart at a fixed initial
radius when generating each new image. This should not be con-
fused with the parallel runs used in practical UPS/VCM rendering,
where participating machines are not fully independent – they have
to communicate initially to give each a different initial radius.

Relative Contribution and Overhead. Compared with
UPS/VCM, our UPG formulation does not need a progressively
shrinking radius d. Therefore, in UPG the relative contribution
of photon mapping does not diminish as the number of iterations
increases. This is illustrated in Fig. 8. Consequently, we have more
freedom when fine-tuning d, as it is purely an efficiency issue and
is free of convergence-imposed constraints. In Fig. 14, d is chosen
to compare with UPS/VCM at a similar level of variance.

Compared with traditional photon mapping, UPG introduces two
sources of overhead. The first source is the shadow ray traced be-
tween zt′−1 and ys, plus the follow-up BSDF evaluations. The sec-
ond source is the Bernoulli trials. The average number of Bernoulli
trials per connection is approximately the same across our test
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0.3× 0.6× 1.0× 1.5× 3.0×
Figure 10: UPG+BDPT and UPS/VCM rendering with different
gather radiuses. All insets are chosen from Rings and are rendered
with the same computation time (10min). When the gather radius
increases, our algorithm puts greater emphasis on the photon map-
ping sampling technique, and the area mainly rendered by BDPT
shows more variance. For UPS/VCM, the increasing gather radius
will reduce variance and inevitably increase bias at the same time.

scenes, ranging from 2.60 to 2.87. As illustrated in Fig. 9, most
pixels of Fig. 1 require fewer than 3 trials, indicating that the angu-
lar bound reduces the complexity of Bernoulli trials from O(n2) to
O(n) in practice. Although there are a few long-tail cases triggered
at a very low probability, the corresponding performance overhead
is acceptable when amortized over the entire image.

We quantitatively evaluate the UPG overhead using the kitchen
scene in Fig. 8 as an example. Compared with UPS/VCM, UPG
takes approximately 4× time to process each photon. However, as
shown in Fig. 8 (c)-(f), the shrinking radius in UPS/VCM gradu-
ally reduces the effectiveness of photon mapping during each iter-
ation, gradually shifting the dominance to the less efficient BDPT.
Here the initial radius of UPS/VCM is 1.5× greater than the ra-
dius of UPG. As shown on the right chart of Fig. 8, this allows
UPS/VCM to generate light paths at a significantly higher speed
than UPG+BDPT in the first few minutes, which leads to the lower
estimation variance in Fig. 8 (a). As the rendering progresses, how-
ever, the sampling speed of UPS/VCM drops rapidly. On the other
hand, UPG+BDPT maintains a constant speed and takes the lead
after approximately 2 hours. Even well before the turning point,
the cumulative effect of having more PM samples already allows
UPG+BDPT to provide superior rendering quality, as shown in
Fig. 8 (b). This indicates that photon gathering is a more effec-
tive sampling technique than BDPT for the kitchen scene, which is
dominated by indirect illumination.

Although UPG+BDPT maintains a stable sampling speed, the
speed still depends on d and some fine tuning is required for optimal
rendering efficiency. A larger d generates more connections while
potentially consuming more computation time on low-contribution
light paths. A comparison between different values of d is shown
in Fig. 10. While our method is not sensitive to small changes of d,
excessively large or small values can still be problematic.

Comparisons with Biased Alternatives. Fig. 14 compares our
UPG with state-of-the-art biased alternatives. As shown in the fig-
ures and zoom-ins, the UPS/VCM results exhibit bias artifacts from
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Reference (a) (b) (c) (d) (e)
Figure 11: Bias artifacts cannot be completely removed without
our unbiased probability reciprocal estimation. (a)-(b) are ren-
dered with UPS/VCM. (b) uses the correct fc in place of fcVM but
leaves disc-approximated probability untouched, and thus employs
the same connection probability approximation as in [Bekaert et al.
2003]. The artifacts of biases are reduced but not removed. (c) fol-
lows up with another 50 minutes of rendering for (b), and still fails
to remove the artifacts. (d) is rendered using UPG and is thus free of
such artifacts. (e) is the reference. The initial radius of UPS/VCM
and the gathering radius of UPG are the same. Rendering time is
10 minutes except for the reference. The full images are provided in
the supplementary material.

the reference images even after significant rendering time. For ex-
ample, the caustics and shadows in the rings scene are blurred. The
detailed geometry of the palace looks flattened. Light leaks around
the wall corner in the living room scene. In the kitchen scene with
many glossy reflections, the kettle reflects a highlight that does not
exist in the reference result.

Unbiased connection probability reciprocal estimation is critical
when removing bias artifacts. Simply replacing fcVM with fc re-
duces the artifacts of incorrect evaluations of visibility and shadow.
However, the incorrect probability term causes legitimate light
paths to become under-weighted, which manifests as artificial dark-
ening at sharp features or increased estimation variance, as illus-
trated in Fig. 11 (b). Such artifacts remain in the image even after
an hour of rendering, as illustrated in Fig. 11 (c). It requires the un-
biased probability reciprocal in UPG to completely eliminate such
artifacts while keeping the low variance estimation of photon gath-
ering, as illustrated in Fig. 11 (d).

Comparisons with Unbiased Alternatives. We also compare
UPG+BDPT with the state-of-the-art unbiased alternative of
MMLT in Fig. 14. For the same computation time, MMLT can also
produce a low variance estimation. However, our method does not
produce spike artifacts even with challenging paths, and generates
less noise for deeper indirect lighting paths such as the living room
counter. That is an advantage inherited from photon mapping.

We also compare our method with particle-guided BDPT [Vorba
et al. 2014]. As shown in Fig. 12, UPG+BDPT (c) outperforms
guided BDPT (b) in general. We further made a preliminary attempt
of using guided BDPT for sub-path sampling in UPG+BDPT. Al-
though our unoptimized implementation is not efficient enough for
a same-time comparison yet, it demonstrates some improvements
in (d) when compared with plain UPG+BDPT at the same number
of paths per pixel.

Although our method does not have the low frequency filtering
effect of traditional density estimation techniques, UPG still per-
forms well for a variety of light paths including many-bounce dif-
fuse inter-reflections, generating a smoother result when compared
with other unbiased methods. This indicates that the fundamental
efficiency of photon gathering goes beyond its filtering effect, and
is not limited to caustics paths.

(a) BDPT, 5min, 588spp (b) Guided BDPT, 5min, 519spp

(c) UPG+BDPT, 5min, 503spp (d) Guided UPG+BDPT, 503spp

Figure 12: Comparison between particle-guided BDPT and
UPG+BDPT. (a)-(c) are rendered in five minutes. (d) is rendered
with the same sampling rate as (c).

7 Discussion and Future Work

Limitations. The most important limitation of our unbiased pho-
ton gathering is the Bernoulli trial overhead, which puts our method
at a disadvantage for shallow paths that are already easy to sample.
As shown in Table 1, our method is inefficient for direct lighting
paths due to the higher per-sample cost. This is the low variance
problem discussed by Veach [1998]. If a specific type of light trans-
port has already been well-sampled by existing techniques, com-
bining with more techniques would only introduce additional vari-
ance. We currently work around this issue by heuristically setting a
lower sampling rate for shallow paths and disabling direct lighting
paths entirely in our method. This is consistent with the practical
usage of PM methods, which often recommend excluding direct
lighting [Jensen 2001].

Table 1: RMSE comparison for different path depths. This experi-
ment is performed on the stairs scene in Fig. 14.

Depth k ≤ 2 k = 3 k = 4 k > 4
BDPT 0.0074 0.0614 0.0733 0.1570
UPG 0.0123 0.0333 0.0310 0.0418

UPG cannot handle strict specular-diffuse-specular (SDS) paths,
where the BSDF terms are Dirac delta functions. This is an open
problem for unbiased path sampling which we do not solve. Exist-
ing biased estimations such as UPS/VCM approximate such specu-
lar bounces by smoothing out the sampled specular photons without
fully generating the relevant light paths in a physically based man-
ner, which cannot be easily adapted to unbiased rendering.

Another issue is that UPG is inefficient for connections with specu-
lar bounces. The problem is more pronounced for refraction effects
where typical light paths have more specular bounces than non-
specular bounces. If one of the sub-path endpoints to be connected
is on a specular surface, the corresponding delta function BSDF
evaluates to zero, which prevents the connected path from making
any contribution. On the other hand, non-SDS specular paths can
still be generated by making a connection at a pair of non-specular
vertices.

In addition, UPG does handle highly glossy materials efficiently,
which can approximate specular effects to a level of sharpness com-
parable with UPS/VCM. Fig. 13 compares specular caustics gen-
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Reference (a) (b) (c) (d)

Figure 13: Caustics rendering. All results are from 10 minutes
of rendering except for the reference. (a) specular rings rendered
with BDPT. (b)-(c) specular rings rendered with UPS/VCM. The
initial radius in (c) is a half of the initial radius in (b). (d) Highly
glossy rings rendered with UPG+BDPT, whose gathering radius is
the same as the initial radius in (b). (c) and (d) look similar but (d)
is less noisy. (b) is more blurry compared with (c) and (d). The full
images are provided in the supplementary material.

erated using a variety of methods. (a) is the reference generated
using BDPT rendering, which is still noisy but illustrates the true
“sharpness” of the specular caustics. In (b), the biased UPS/VCM
produces a smooth-but-blurry result. A smaller initial radius im-
proves the sharpness at the cost of a noisy image, as illustrated
in Fig. 13 (c). Replacing the specular input with a highly glossy
BSDF, UPG+BDPT in Fig. 13 (d) produces a sharpness similar to
Fig. 13 (c) but is much less noisy.

Discussion. Accuracy and efficiency are the endless pursuit of
light transport simulation. Recently, plenty of efficient methods
have been proposed but accompanied with biases. The error of
Monte Carlo estimate comes from both variance and bias. When
variance is significantly reduced to a low level, the error naturally
results from the bias. Variance and bias are like two sides of a
coin, without considering each we cannot have a comprehensive un-
derstanding. Biased-but-consistent methods like PPM/SPPM and
UPS/VCM strike a nice balance by providing a low variance ini-
tially and progressively diminishing the bias to zero. UPG takes
another approach for which we clarify the sources of bias and re-
move them at a mathematical level. The elimination of bias restricts
the estimation error to variance only and makes our method natively
progressive. This is practically significant as parameters like d be-
come significantly simpler to tune than in biased methods.

Photon mapping has been widely used for efficient light trans-
port simulation for decades. Extensions like PPM/SPPM and
UPS/VCM pushed the state-of-the-art for high quality rendering.
However, photon mapping has always been considered a biased al-
gorithm from the time of its introduction, with speculation that the
method is intrinsically biased. UPG takes a critical step to disprove
this speculation. In doing so, we decouple photon mapping from
traditional biased evaluations, which fully integrates photon map-
ping into the family of path sampling techniques by allowing pho-
tons to be evaluated in an unbiased manner.

Future Work. It would be interesting to extend our method to vol-
ume rendering where the gathering neighborhood or virtual lights
can take more flexible shapes such as rays and beams [Sun et al.
2010; Jarosz et al. 2011; Novák et al. 2012; Křivánek et al. 2014].
The radius can be also chosen adaptively and dynamically for better
performance. Another interesting direction is to extend the Russian
roulette formulation to light path construction mechanisms other
than nearest neighborhood search, such as VPL with the probabilis-
tic shadow test. Finally, our current MCMC integration is rather
straightforward, and more advanced solutions could be developed.
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A Variance Reduction with Angular Bound

The angular bound introduced in Sec. 3.4 also reduces the estima-
tion variance of the probability reciprocal r. Without the angular
bound, the estimation variance can be computed based on Eq. (11)
and Eq. (12). Since all relevant terms are computed for the same
path x̄s′,t′−1, we drop the function notations for brevity.

V [N ] = E
[
N2]− E2 [N ]

=

+∞∑
i=1

i2pc(1− pc)i−1 − (
1

pc
)2 =

1− pc

(pc)2 . (25)

The angular bound factors pb out of N as Nb/pb, the variance of
which can be also evaluated based on Eq. (25)

V

[
Nb

pb

]
=

1

(pb)2 V
[
Nb
]

=
1

(pb)2

1− pc

pb(
pc

pb

)2 =
1− pc

pb

(pc)2 . (26)

Note that if we ignore the shared (pc)2 term, the remaining 1− pc
and 1− pc/pb terms are the respective rejection probabilities of the
Russian roulette process. Applying a tight angular bound usually
allows most sampled tentative rays to hit the gathering neighbor-
hood successfully. This reduces the rejection probability 1−pc/pb,
and by extension the estimation variance, to nearly zero. In prac-
tice, the bound is constrained by the analytical integration require-
ment and is not always tight. We found that without bounding, the
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original rejection probability 1 − pc is almost 1 as pc is usually in
the range between 10−4 and 10−3, deduced from the number of
required Bernoulli trials. With bounding, the probability 1− pc/pb
can be reduced to less than 0.4, which corresponds to a more than
60% reduction of variance.

B Alternative Connection Candidate

Given two sub-paths y1 · · · ys′ and zt′ · · · z1 paired by photon gath-
ering, generating a full path requires removing one of the sub-path
endpoints (i.e., ys′ or zt′ ). There are two candidates for removal,
which would generate two different paths x̄s′−1,t′ and x̄s′,t′−1.
However, the two path candidates are spatially close and they are
unlikely to make a significantly different contribution to the final
image. Therefore, as a cost-motivated optimization, we only evalu-
ate one of them and discard the other.

Since the bottleneck in evaluating a path is the Bernoulli trials, we
do not want the selection criterion to depend on pc. In addition, we
prefer a deterministic criterion, as correlating the final Monte Carlo
estimate with dependent random variables may bias the result. Fi-
nally, MIS-based theories do not apply here, as fundamentally this
is a decision between different paths, not a decision between dif-
ferent sampling techniques creating the same path. Therefore, we
elect to make the choice heuristically.

Note that ys′ is importance-sampled from fs(ys′−2 → ys′−1 →
ys′) and z′t′ is importance-sampled from fs(zt′−2 → zt′−1 →
zt′). Intuitively, removing one of the two endpoints corresponds
to reconnecting the corresponding importance-sampled edge to a
slightly shifted location. One could formulate the resulting change
as

C∗RR(x̄s′,t′−1) ∝∼
fs(zt′−2 → zt′−1 → ys′)

fs(zt′−2 → zt′−1 → zt′)
, (27)

C∗RR(x̄s′−1,t′) ∝∼
fs(ys′−2 → ys′−1 → zt′)

fs(ys′−2 → ys′−1 → ys′)
. (28)

Since a less glossy BSDF is less likely to result in a significant
change in C∗RR, we heuristically test the surface properties at ys′−1

and zt′−1, then we remove the endpoint corresponding to the sur-
face with the lower glossiness. If ys′−1 is the light source, we as-
sign an effective glossiness based on its type, which is positive in-
finity for directional and point sources, or a low value comparable
to diffuse surfaces for area light sources. If zt′−1 is the camera, we
assign a high effective glossiness corresponding to a surface that
produces mirror-like reflections. As shown in Table 2, our heuris-
tic significantly reduced the overall variance level. Note that the
high effective glossiness for the camera is required to exclude paths
that directly connect the camera to a photon on a diffuse surface,
which is the main source of error for x̄s′,t′−1-type connections.
Also note that the probability to sample the abandoned path is still
non-zero because it can be generated by connecting y1 · · · ys′−1zt′
and ys′zt′−1 · · · z1 instead.

Table 2: RMSE comparison for different connection choices at the
same computational time. The experiment is performed on the liv-
ing room scene in Fig. 14. Note that evaluating both connections
produced a worse result due to the computational cost wasted on
less effective candidates.

x̄s′,t′−1 only x̄s′−1,t′ only Average both Our heuristics
0.0438 0.0172 0.0274 0.0148

C Reciprocal of an Integral

In this section, we briefly introduce the unbiased algorithm
for estimating the reciprocal of a general integral proposed by
Booth [2007], and discuss its relationship with our method pro-
posed in Sec. 3.4.

Given a non-negative function f(x) defined in a domain Ω,
Booth [2007] aimed to evaluate the reciprocal of its integral

I =
1∫

Ω
f(x)dx

. (29)

Assuming
∫

Ω
f(x)dx ∈ (0, 1), Eq. (29) can be evaluated as a series

expansion:

I =
1

1− g =

+∞∑
i=0

gi, (30)

g = 1−
∫

Ω

f(x)dx.

Reorganizing the infinite series and taking an independent Monte
Carlo estimation for each occurrence of g, we have

Î = 1 +

+∞∑
i=1

i∏
j=1

ĝj , (31)

ĝj = 1− f(xj),

where {xj} is an infinite set of stochastic samples in Ω, and we
assume

∫
Ω

1dx = 1.

The series can be terminated using Russian roulette once
∏i
j=1 ĝj

falls below a pre-specified threshold. However, in our case, f is the
binary outcome of a Bernoulli trial, and ĝj always takes a value of
0 or 1. Therefore, the series in Eq. (31) degenerates into a counting
process. Assuming the series of Bernoulli trials succeeds for the
first time after N tries, we have:

ĝj =

{
1, j < N

0, j ≥ N,
, (32)

Î = 1 +

N∑
i=1

i∏
j=1

ĝj = N,

which is identical to our algorithm in Sec. 3.4.
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BDPT MMLT VCM Our UPG+BDPT Reference

Figure 14: Same-time quality comparison between different methods. The stairs scene in the first row is primarily illuminated by many-
bounce indirect lighting. The rings scene in the second row is a classical caustics setup. The palace has detailed geometry and produces
intricate occlusions and inter-reflections. The living room scene in the third row combines many glossy objects with many-bounce lighting.
The kitchen scene is dominated by glossy-glossy inter-reflection. UPS/VCM and UPG can take advantage of photon mapping, and achieve a
lower variance level than classical BDPT. MMLT delivers an overall variance level comparable to ours, but challenging light paths create
bright spike artifacts. Our method has a noticeable advantage for deep light paths and glossy materials. UPS/VCM also achieves a variance
level comparable with our algorithm, but it over-blurs thin features and leaks light at high frequency occlusions. The rendering times of the
5 scenes except for the reference are 1 hour, 10 minutes, 10 minutes, 1 hour and 30 minutes respectively. The corresponding ratios of radius
between UPS/VCM and UPG are 1×, 1.25×, 1×, 1× and 1.5× respectively.
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